搜尋
首頁後端開發Python教學Python实现快速多线程ping的方法

本文实例讲述了Python实现快速多线程ping的方法。分享给大家供大家参考。具体如下:

#!/usr/bin/python
#_*_coding:utf-8_*_
#
'''
名称:快速多线程ping程序
开发:gyhong gyh9711
日期:20:51 2011-04-25
'''
import pexpect
import datetime
from threading import Thread
host=["192.168.1.1","192.168.1.123","192.168.2.1",
"192.168.1.1","192.168.1.123","192.168.2.1",
"192.168.1.1","192.168.1.123","192.168.2.1",
"192.168.1.1","192.168.1.123","192.168.2.1",
"192.168.1.1"]
report_ok=[]
report_error=[]
class PING(Thread):
  def __init__(self,ip):
    Thread.__init__(self)
    self.ip=ip
  def run(self):
    Curtime = datetime.datetime.now()  
    #Scrtime = Curtime + datetime.timedelta(0,minute,0) 
    #print("[%s]主机[%s]" % (Curtime,self.ip))
    ping=pexpect.spawn("ping -c1 %s" % (self.ip))
    check=ping.expect([pexpect.TIMEOUT,"1 packets transmitted, 1 received, 0% packet loss"],2)
    if check == 0:
      print("[%s] 超时 %s" % (Curtime,self.ip))
    elif check == 1:
      print ("[%s] %s 可达" % (Curtime,self.ip))
    else:
      print("[%s] 主机%s 不可达" % (Curtime,self.ip))
#多线程同时执行
T_thread=[]
for i in host:
  t=PING(i)
  T_thread.append(t)
for i in range(len(T_thread)):
  T_thread[i].start()
#
#print ("\n=========问题主机情况如下==========\n")
#output(report_error)
#print ("\n=========正常主机情况如下==========\n")
#output(report_ok)

执行结果:

administrator@nagios:/win/pexpect$ ./ping.py
[2011-04-25 21:30:22.126981] 192.168.1.1 可达
[2011-04-25 21:30:22.148376] 192.168.1.1 可达
[2011-04-25 21:30:22.179846] 192.168.1.1 可达
[2011-04-25 21:30:22.203691] 192.168.1.1 可达
[2011-04-25 21:30:22.227696] 192.168.2.1 可达
[2011-04-25 21:30:22.134049] 超时 192.168.1.123
[2011-04-25 21:30:22.145610] 超时 192.168.2.1
[2011-04-25 21:30:22.157558] 超时 192.168.1.123
[2011-04-25 21:30:22.167898] 超时 192.168.2.1
[2011-04-25 21:30:22.197572] 超时 192.168.1.123
[2011-04-25 21:30:22.202430] 超时 192.168.2.1
[2011-04-25 21:30:22.215561] 超时 192.168.1.123
[2011-04-25 21:30:22.229952] 超时 192.168.1.1

希望本文所述对大家的Python程序设计有所帮助。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python的科學計算中如何使用陣列?Python的科學計算中如何使用陣列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何處理同一系統上的不同Python版本?您如何處理同一系統上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

與標準Python陣列相比,使用Numpy數組的一些優點是什麼?與標準Python陣列相比,使用Numpy數組的一些優點是什麼?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

陣列的同質性質如何影響性能?陣列的同質性質如何影響性能?Apr 25, 2025 am 12:13 AM

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

編寫可執行python腳本的最佳實踐是什麼?編寫可執行python腳本的最佳實踐是什麼?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。