搜尋
首頁後端開發Python教學5种Python单例模式的实现方式

本文为大家分享了Python创建单例模式的5种常用方法,供大家参考,具体内容如下

所谓单例,是指一个类的实例从始至终只能被创建一次。
方法1:
如果想使得某个类从始至终最多只有一个实例,使用__new__方法会很简单。Python中类是通过__new__来创建实例的:

class Singleton(object):
  def __new__(cls,*args,**kwargs):
    if not hasattr(cls,'_inst'):
      cls._inst=super(Singleton,cls).__new__(cls,*args,**kwargs)
    return cls._inst
if __name__=='__main__':
  class A(Singleton):
    def __init__(self,s):
      self.s=s   
  a=A('apple')  
  b=A('banana')
  print id(a),a.s
  print id(b),b.s

结果:
29922256 banana
29922256 banana
通过__new__方法,将类的实例在创建的时候绑定到类属性_inst上。如果cls._inst为None,说明类还未实例化,实例化并将实例绑定到cls._inst,以后每次实例化的时候都返回第一次实例化创建的实例。注意从Singleton派生子类的时候,不要重载__new__。
方法2:
有时候我们并不关心生成的实例是否具有同一id,而只关心其状态和行为方式。我们可以允许许多个实例被创建,但所有的实例都共享状态和行为方式:

class Borg(object):
  _shared_state={}
  def __new__(cls,*args,**kwargs):
    obj=super(Borg,cls).__new__(cls,*args,**kwargs)
    obj.__dict__=cls._shared_state
    return obj

将所有实例的__dict__指向同一个字典,这样实例就共享相同的方法和属性。对任何实例的名字属性的设置,无论是在__init__中修改还是直接修改,所有的实例都会受到影响。不过实例的id是不同的。要保证类实例能共享属性,但不和子类共享,注意使用cls._shared_state,而不是Borg._shared_state。
因为实例是不同的id,所以每个实例都可以做字典的key:

if __name__=='__main__':
  class Example(Borg):
    pass
  a=Example()
  b=Example()
  c=Example()
  adict={}
  j=0
  for i in a,b,c:
    adict[i]=j
    j+=1
  for i in a,b,c:
    print adict[i]

结果:
0
1
2
如果这种行为不是你想要的,可以为Borg类添加__eq__和__hash__方法,使其更接近于单例模式的行为:

class Borg(object):
  _shared_state={}
  def __new__(cls,*args,**kwargs):
    obj=super(Borg,cls).__new__(cls,*args,**kwargs)
    obj.__dict__=cls._shared_state
    return obj
  def __hash__(self):
    return 1
  def __eq__(self,other):
    try:
      return self.__dict__ is other.__dict__
    except:
      return False
if __name__=='__main__':
  class Example(Borg):
    pass
  a=Example()
  b=Example()
  c=Example()
  adict={}
  j=0
  for i in a,b,c:
    adict[i]=j
    j+=1
  for i in a,b,c:
    print adict[i]

结果:
2
2
2
所有的实例都能当一个key使用了。
方法3
当你编写一个类的时候,某种机制会使用类名字,基类元组,类字典来创建一个类对象。新型类中这种机制默认为type,而且这种机制是可编程的,称为元类__metaclass__ 。

class Singleton(type):
  def __init__(self,name,bases,class_dict):
    super(Singleton,self).__init__(name,bases,class_dict)
    self._instance=None
  def __call__(self,*args,**kwargs):
    if self._instance is None:
      self._instance=super(Singleton,self).__call__(*args,**kwargs)
    return self._instance
if __name__=='__main__':
  class A(object):
    __metaclass__=Singleton    
  a=A()
  b=A()
  print id(a),id(b)

结果:
34248016 34248016
id是相同的。
例子中我们构造了一个Singleton元类,并使用__call__方法使其能够模拟函数的行为。构造类A时,将其元类设为Singleton,那么创建类对象A时,行为发生如下:
A=Singleton(name,bases,class_dict),A其实为Singleton类的一个实例。
创建A的实例时,A()=Singleton(name,bases,class_dict)()=Singleton(name,bases,class_dict).__call__(),这样就将A的所有实例都指向了A的属性_instance上,这种方法与方法1其实是相同的。
 方法4
python中的模块module在程序中只被加载一次,本身就是单例的。可以直接写一个模块,将你需要的方法和属性,写在模块中当做函数和模块作用域的全局变量即可,根本不需要写类。
而且还有一些综合模块和类的优点的方法:

class _singleton(object):
  class ConstError(TypeError):
    pass
  def __setattr__(self,name,value):
    if name in self.__dict__:
      raise self.ConstError
    self.__dict__[name]=value
  def __delattr__(self,name):
    if name in self.__dict__:
      raise self.ConstError
    raise NameError
import sys
sys.modules[__name__]=_singleton()

python并不会对sys.modules进行检查以确保他们是模块对象,我们利用这一点将模块绑定向一个类对象,而且以后都会绑定向同一个对象了。
将代码存放在single.py中:

>>> import single
>>> single.a=1
>>> single.a=2

ConstError
>>> del single.a
ConstError
方法5:
最简单的方法:

class singleton(object):
  pass
singleton=singleton()

将名字singleton绑定到实例上,singleton就是它自己类的唯一对象了。

以上就是Python单例模式的实现方式详细介绍,希望对大家的学习有所帮助。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!