搜尋
首頁後端開發Python教學一步步解析Python斗牛游戏的概率

过年回家,都会约上亲朋好友聚聚会,会上经常会打麻将,斗地主,斗牛。在这些游戏中,斗牛是最受欢迎的,因为可以很多人一起玩,而且没有技术含量,都是看运气(专业术语是概率)。
斗牛的玩法是:

  • 1、把牌中的JQK都拿出来
  • 2、每个人发5张牌
  • 3、如果5张牌中任意三张加在一起是10的 倍数,就是有牛。剩下两张牌的和的10的余数就是牛数。

牌的大小:

4条 > 3条 > 牛十 > 牛九 > …… > 牛一 >没有牛

而这些牌出现的概率是有多少呢?

由于只有四十张牌,所以采用了既简单,又有效率的方法枚举来计算。
计算的结果:

  • 所有牌的组合数:658008
  • 出现四条的组合数:360,概率 :0.05%
  • 出现三条的组合数:25200,概率 :3.83%
  • 出现牛十的组合数:42432,概率 :6.45%
  • 出现牛九或牛八的组合数:87296,概率 :13.27%
  • 出现牛一到牛七的组合数:306112,概率 :46.52%
  • 出现没有牛的组合数:196608,概率 :29.88%

所以有七成的概率是有牛或以上的,所以如果你经常遇到没有牛,说明你的运气非常差或者本来是有牛的,但是你没有找出来。

Python源代码:

# encoding=utf-8
__author__ = 'kevinlu1010@qq.com'
import os
import cPickle

from copy import copy
from collections import Counter
import itertools
'''
计算斗牛游戏的概率
'''

class Poker():
  '''
  一张牌
  '''

  def __init__(self, num, type):
    self.num = num # 牌数
    self.type = type # 花色


class GamePoker():
  '''
  一手牌,即5张Poker
  '''
  COMMON_NIU = 1 # 普通的牛,即牛一-牛七
  NO_NIU = 0 # 没有牛
  EIGHT_NINE_NIU = 2 # 牛九或牛八
  TEN_NIU = 3 # 牛十
  THREE_SAME = 4 # 三条
  FOUR_SAME = 5 # 四条

  def __init__(self, pokers):
    assert len(pokers) == 5
    self.pokers = pokers
    self.num_pokers = [p.num for p in self.pokers]
    # self.weight = None # 牌的权重,权重大的牌胜
    # self.money_weight = None # 如果该牌赢,赢钱的权重
    self.result = self.sumary()

  def is_niu(self):
    '''
    是否有牛
    :return:
    '''
    # if self.is_three_same():
    # return 0
    for three in itertools.combinations(self.num_pokers, 3):
      if sum(three) % 10 == 0:
        left = copy(self.num_pokers)
        for item in three:
          left.remove(item)
        point = sum(left) % 10
        return 10 if point == 0 else point

    return 0

  def is_three_same(self):
    '''
    是否3条
    :return:
    '''
    # if self.is_four_same():
    # return 0
    count = Counter([p.num for p in self.pokers])
    for num in count:
      if count[num] == 3:
        return num
    return 0

  def is_four_same(self):
    '''
    是否4条
    :return:
    '''
    count = Counter([p.num for p in self.pokers])
    for num in count:
      if count[num] == 4:
        return num
    return 0

  def sumary(self):
    '''
    计算牌
    '''
    if self.is_four_same():
      return GamePoker.FOUR_SAME
    if self.is_three_same():
      return GamePoker.THREE_SAME
    niu_point = self.is_niu()
    if niu_point in (8, 9):
      return GamePoker.EIGHT_NINE_NIU
    elif niu_point == 10:
      return GamePoker.TEN_NIU
    elif niu_point > 0:
      return GamePoker.COMMON_NIU
    else:
      return GamePoker.NO_NIU

def get_all_pokers():
  '''
  生成所有的Poker,共四十个
  :return:
  '''
  pokers = []
  for i in range(1, 11):
    for j in ('A', 'B', 'C', 'D'):
      pokers.append(Poker(i, j))

  return pokers


def get_all_game_poker(is_new=0):
  '''
  生成所有game_poker
  :param pokers:
  :return:
  '''
  pokers = get_all_pokers()
  game_pokers = []

  if not is_new and os.path.exists('game_pokers'):
    with open('game_pokers', 'r') as f:
      return cPickle.loads(f.read())

  for pokers in itertools.combinations(pokers, 5): # 5代表五张牌
    game_pokers.append(GamePoker(pokers))
  with open('game_pokers', 'w') as f:
    f.write(cPickle.dumps(game_pokers))
  return game_pokers


def print_rate(game_pokers):
  total_num = float(len(game_pokers))
  four_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.FOUR_SAME])
  three_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.THREE_SAME])
  ten_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.TEN_NIU])
  eight_nine_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.EIGHT_NINE_NIU])
  common_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.COMMON_NIU])
  no_num = len([game_poker for game_poker in game_pokers if game_poker.result == GamePoker.NO_NIU])
  print '所有牌的组合数:%d' % total_num
  print '出现四条的组合数:%d,概率 :%.2f%%' % (four_num, four_num * 100 / total_num)
  print '出现三条的组合数:%d,概率 :%.2f%%' % (three_num, three_num * 100 / total_num)
  print '出现牛十的组合数:%d,概率 :%.2f%%' % (ten_num, ten_num * 100 / total_num)
  print '出现牛九或牛八的组合数:%d,概率 :%.2f%%' % (eight_nine_num, eight_nine_num * 100 / total_num)
  print '出现牛一到牛七的组合数:%d,概率 :%.2f%%' % (common_num, common_num * 100 / total_num)
  print '出现没有牛的组合数:%d,概率 :%.2f%%' % (no_num, no_num * 100 / total_num)


def main():
  game_pokers = get_all_game_poker() # 658008种
  print_rate(game_pokers)


main()

以上就是Python计算斗牛游戏的概率相关内容,希望对大家的学习有所帮助。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何解決Linux終端中查看Python版本時遇到的權限問題?如何解決Linux終端中查看Python版本時遇到的權限問題?Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

Python中的數學模塊:統計Python中的數學模塊:統計Mar 09, 2025 am 11:40 AM

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

哪些流行的Python庫及其用途?哪些流行的Python庫及其用途?Mar 21, 2025 pm 06:46 PM

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

如何使用Python創建命令行接口(CLI)?如何使用Python創建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中?在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中?Apr 01, 2025 pm 11:15 PM

在使用Python的pandas庫時,如何在兩個結構不同的DataFrame之間進行整列複製是一個常見的問題。假設我們有兩個Dat...

解釋Python中虛擬環境的目的。解釋Python中虛擬環境的目的。Mar 19, 2025 pm 02:27 PM

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具