列表生成式
即创建列表的方式,最笨的方法就是写循环逐个生成,前面也介绍过可以使用range()函数来生成,不过只能生成线性列表,下面看看更为高级的生成方式:
>>> [x * x for x in range(1, 11)] [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
你甚至可以在后面加上if判断:
>>> [x * x for x in range(1, 11) if x % 2 == 0] [4, 16, 36, 64, 100]
循环嵌套,全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ'] ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
看一个简单应用,列出当前目录下所有文件和目录:
>>> import os >>> [d for d in os.listdir('.')] ['README.md', '.git', 'image', 'os', 'lib', 'sublime-imfix', 'src']
前面也说过Python里循环中可以同时引用两个变量,所以生成变量也可以:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' } >>> [k + '=' + v for k, v in d.iteritems()] ['y=B', 'x=A', 'z=C']
也可以通过一个list生成另一个list,例如把一个list中所有字符串变为小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple'] >>> [s.lower() for s in L] ['hello', 'world', 'ibm', 'apple']
但是这里有个问题,list中如果有其他非字符串类型,那么lower()会报错,解决办法:
>>> L = ['Hello', 'World', 'IBM', 'Apple', 12, 34] >>> [s.lower() if isinstance(s,str) else s for s in L] ['hello', 'world', 'ibm', 'apple', 12, 34]
此外,列表生成式还有许多神奇用法,说明请看注释:
#!/usr/bin/env python3 # -*- coding: utf-8 -*- list(range(1, 11)) # 生成1乘1,2乘2...10乘10 L = [] for x in range(1, 11): L.append(x * x) # 上面太麻烦,看下面 [x * x for x in range(1, 11)] # [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] # 加上if,就可以筛选出仅偶数的平方 [x * x for x in range(1, 11) if x % 2 == 0] # [4, 16, 36, 64, 100] # 两层循环,可以生成全排列 [m + n for m in 'ABC' for n in 'XYZ'] # ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ'] # 列出当前目录下的所有文件和目录名 import os [d for d in os.listdir('.')] # on.listdir可以列出文件和目录 # 列表生成式也可以使用两个变量来生成list: d = {'x': 'A', 'y': 'B', 'z': 'C'} [k + '=' + v for k, v in d.items()] # ['x=A', 'z=C', 'y=B'] # 把一个list中所有的字符串变成小写 L = ['Hello', 'World', 'IBM', 'Apple'] [s.lower() for s in L] # ['hello', 'world', 'ibm', 'apple'] L1 = ['Hello', 'World', 18, 'Apple', None] L2 = [s.lower() for s in L1 if isinstance(s, str)] print(L2) # ['hello', 'world', 'apple'] # isinstance函数可以判断一个变量是不是字符串
生成器
列表生成式虽然强大,但是也会有一个问题,当我们想生成一个很大的列表时,会非常耗时,并且占用很大的存储空间,关键是这里面的元素可能你只需要用到前面很少的一部分,大部分的空间和时间都浪费了。Python提供了一种边计算边使用的机制,称为生成器(Generator),创建一个Generator最简单的方法就是把[]改为():
>>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x7fe73eb85cd0>
如果要一个一个打印出来,可以通过generator的next()方法:
>>> g.next() 0 >>> g.next() 1 >>> g.next() 4 >>> g.next() 9 >>> g.next() 16 >>> g.next() 25 >>> g.next() 36 >>> g.next() 49 >>> g.next() 64 >>> g.next() 81 >>> g.next() Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
其实generator object也是可迭代的,所以可以用循环打印,还不会报错。
>>> g = (x * x for x in range(10)) >>> for n in g: ... print n ...
这是简单的推算算法,但是如果算法比较复杂,写在()里就不太合适了,我们可以换一种方式,使用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1
上面的函数可以输出斐波那契数列的前N个数,这个也是通过前面的数推算出后面的,所以可以把函数变成generator object,只需要把print b改为yield b即可。
def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1
如果一个函数定义中包含了yield关键字,这个函数就不在是普通函数,而是一个generator object。
>>> fib(6) <generator object fib at 0x7fa1c3fcdaf0> >>> fib(6).next() 1
所以要想调用这个函数,需要使用next()函数,并且遇到yield语句返回(可以把yield理解为return):
def odd(): print 'step 1' yield 1 print 'step 2' yield 3 print 'step 3' yield 5
看看调用输出结果:
>>> o = odd() >>> o.next() step 1 1 >>> o.next() step 2 3 >>> o.next() step 3 5 >>> o.next() Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
同样也可以改为for循环语句输出。例如:
def odd(): print 'step 1' yield 1 print 'step 2' yield 2 print 'step 3' yield 3 if __name__ == '__main__': o = odd() while True: try: print o.next() except: break

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1
好用且免費的程式碼編輯器

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境