搜尋
首頁後端開發Python教學Python中的列表生成式与生成器学习教程

列表生成式
即创建列表的方式,最笨的方法就是写循环逐个生成,前面也介绍过可以使用range()函数来生成,不过只能生成线性列表,下面看看更为高级的生成方式:

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
你甚至可以在后面加上if判断:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

循环嵌套,全排列:

>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

看一个简单应用,列出当前目录下所有文件和目录:

>>> import os
>>> [d for d in os.listdir('.')]
['README.md', '.git', 'image', 'os', 'lib', 'sublime-imfix', 'src']

前面也说过Python里循环中可以同时引用两个变量,所以生成变量也可以:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.iteritems()]
['y=B', 'x=A', 'z=C']

也可以通过一个list生成另一个list,例如把一个list中所有字符串变为小写:

>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']

但是这里有个问题,list中如果有其他非字符串类型,那么lower()会报错,解决办法:

>>> L = ['Hello', 'World', 'IBM', 'Apple', 12, 34]
>>> [s.lower() if isinstance(s,str) else s for s in L]
['hello', 'world', 'ibm', 'apple', 12, 34]

此外,列表生成式还有许多神奇用法,说明请看注释:

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
 
list(range(1, 11)) 
 
# 生成1乘1,2乘2...10乘10 
L = [] 
for x in range(1, 11): 
  L.append(x * x) 
 
# 上面太麻烦,看下面 
[x * x for x in range(1, 11)] 
# [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 
 
# 加上if,就可以筛选出仅偶数的平方 
[x * x for x in range(1, 11) if x % 2 == 0] 
# [4, 16, 36, 64, 100] 
 
# 两层循环,可以生成全排列 
[m + n for m in 'ABC' for n in 'XYZ'] 
# ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ'] 
 
# 列出当前目录下的所有文件和目录名 
import os 
[d for d in os.listdir('.')] # on.listdir可以列出文件和目录 
 
# 列表生成式也可以使用两个变量来生成list: 
d = {'x': 'A', 'y': 'B', 'z': 'C'} 
[k + '=' + v for k, v in d.items()] 
# ['x=A', 'z=C', 'y=B'] 
 
# 把一个list中所有的字符串变成小写 
L = ['Hello', 'World', 'IBM', 'Apple'] 
[s.lower() for s in L] 
# ['hello', 'world', 'ibm', 'apple'] 
 
L1 = ['Hello', 'World', 18, 'Apple', None] 
L2 = [s.lower() for s in L1 if isinstance(s, str)] 
print(L2) 
# ['hello', 'world', 'apple'] 
# isinstance函数可以判断一个变量是不是字符串 

生成器
列表生成式虽然强大,但是也会有一个问题,当我们想生成一个很大的列表时,会非常耗时,并且占用很大的存储空间,关键是这里面的元素可能你只需要用到前面很少的一部分,大部分的空间和时间都浪费了。Python提供了一种边计算边使用的机制,称为生成器(Generator),创建一个Generator最简单的方法就是把[]改为():

>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x7fe73eb85cd0>

如果要一个一个打印出来,可以通过generator的next()方法:

>>> g.next()
0
>>> g.next()
1
>>> g.next()
4
>>> g.next()
9
>>> g.next()
16
>>> g.next()
25
>>> g.next()
36
>>> g.next()
49
>>> g.next()
64
>>> g.next()
81
>>> g.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

其实generator object也是可迭代的,所以可以用循环打印,还不会报错。

>>> g = (x * x for x in range(10))
>>> for n in g:
...   print n
...

这是简单的推算算法,但是如果算法比较复杂,写在()里就不太合适了,我们可以换一种方式,使用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
  n, a, b = 0, 0, 1
  while n < max:
    print b
    a, b = b, a + b
    n = n + 1

上面的函数可以输出斐波那契数列的前N个数,这个也是通过前面的数推算出后面的,所以可以把函数变成generator object,只需要把print b改为yield b即可。

def fib(max):
  n, a, b = 0, 0, 1
  while n < max:
    yield b
    a, b = b, a + b
    n = n + 1

如果一个函数定义中包含了yield关键字,这个函数就不在是普通函数,而是一个generator object。

>>> fib(6)
<generator object fib at 0x7fa1c3fcdaf0>
>>> fib(6).next()
1

所以要想调用这个函数,需要使用next()函数,并且遇到yield语句返回(可以把yield理解为return):

def odd():
  print 'step 1'
  yield 1
  print 'step 2'
  yield 3
  print 'step 3'
  yield 5

看看调用输出结果:

>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

同样也可以改为for循环语句输出。例如:

def odd():
  print 'step 1'
  yield 1
  print 'step 2'
  yield 2
  print 'step 3'
  yield 3

if __name__ == '__main__':
  o = odd()
  while True:
    try:
      print o.next()
    except:
      break

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境