搜尋
首頁後端開發Python教學Python装饰器基础详解

装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果。相对于其它方式,装饰器语法简单,代码可读性高。因此,装饰器在Python项目中有广泛的应用。

前面快速介绍了装饰器的语法,在这里,我们将深入装饰器内部工作机制,更详细更系统地介绍装饰器的内容,并学习自己编写新的装饰器的更多高级语法。

什么是装饰器

装饰是为函数和类指定管理代码的一种方式。Python装饰器以两种形式呈现:

【1】函数装饰器在函数定义的时候进行名称重绑定,提供一个逻辑层来管理函数和方法或随后对它们的调用。

【2】类装饰器在类定义的时候进行名称重绑定,提供一个逻辑层来管理类,或管理随后调用它们所创建的实例。

简而言之,装饰器提供了一种方法,在函数和类定义语句的末尾插入自动运行的代码——对于函数装饰器,在def的末尾;对于类装饰器,在class的末尾。这样的代码可以扮演不同的角色。
装饰器提供了一些和代码维护性和审美相关的有点。此外,作为结构化工具,装饰器自然地促进了代码封装,这减少了冗余性并使得未来变得更容易。

函数装饰器

通过在一个函数的def语句的末尾运行另一个函数,把最初的函数名重新绑定到结果。

用法

装饰器在紧挨着定义一个函数或方法的def语句之前的一行编写,并且它由@符号以及紧随其后的对于元函数的一个引用组成——这是管理另一个函数的一个函数(或其他可调用对象)。
在编码上,函数装饰器自动将如下语法:

@decorator 
def F(arg): 
... 
F(99)

映射为这个对等形式:

def F(arg): 
... 
F = decorator(F) 
F(99)

这里的装饰器是一个单参数的可调用对象,它返回与F具有相同数目的参数的一个可调用对象。
当随后调用F函数的时候,它自动调用装饰器所返回的对象。

换句话说,装饰实际把如下的第一行映射为第二行(尽管装饰器只在装饰的时候运行一次)

fun(6,7) 
decorator(func)(6,7) 

这一自动名称重绑定也解释了之前介绍的静态方法和property装饰器语法的原因:

class C: 
@staticmethod 
def meth(...):... 
@property 
def name(self):...

实现

装饰器自身是返回可调用对象的可调用对象。实际上,它可以是任意类型的可调用对象,并且返回任意类型的可调用对象:函数和类的任何组合都可以使用,尽管一些组合更适合于特定的背景。

有一种常用的编码模式——装饰器返回了一个包装器,包装器把最初的函数保持到一个封闭的作用域中:

def decorator(F): 
def wrapper(*args): 
# 使用 F 和 *args 
# 调用原来的F(*args) 
return wrapper 
@decorator 
def func(x,y): 
... 
func(6,7)

当随后调用名称func的时候,它确实调用装饰器所返回的包装器函数;随后包装器函数可能运行最初的func,因为它在一个封闭的作用域中仍然可以使用。

为了对类做同样的事情,我们可以重载调用操作:

class decorator: 
def __init__(self,func): 
self.func = func 
def __call__(self,*args): 
# 使用self.func和args 
# self.func(*args)调用最初的func 
@decorator 
def func(x,y): 
... 
func(6,7)

但是,要注意的是,基于类的代码中,它对于拦截简单函数有效,但当它应用于类方法函数时,并不很有效:
如下反例:

class decorator: 
def __init__(self,func): 
self.func = func 
def __call__(self,*args): 
# 调用self.func(*args)失败,因为C实例参数无法传递 
class C: 
@decorator 
def method(self,x,y): 
...

这时候装饰的方法重绑定到一个类的方法上,而不是一个简单的函数,这一点带来的问题是,当装饰器的方法__call__随后运行的时候,其中的self接受装饰器类实例,并且类C的实例不会包含到一个*args中。

这时候,嵌套函数的替代方法工作得更好:

def decorator: 
def warpper(*args): 
# ... 
return wrapper 
@decorator 
def func(x,y): 
... 
func(6,7) 
class C: 
@decorator 
def method(self,x,y): 
... 
x = C() 
x.method(6,7)

类装饰器

类装饰器与函数装饰器使用相同的语法和非常相似的编码方式。类装饰器是管理类的一种方式,或者用管理或扩展类所创建的实例的额外逻辑,来包装实例构建调用。

用法

假设类装饰器返回一个可调用对象的一个单参数的函数,类装饰器的语法为:

@decorator 
class C: 
... 
x = C(99)

等同于下面的语法:

class C: 
... 
C = decorator(C) 
x = C(99)

直接效果是随后调用类名会创建一个实例,该实例会触发装饰器所返回的可调用对象,而不是调用最初的类自身。

实现

类装饰器返回的可调用对象,通常创建并返回最初的类的一个新的实例,以某种方式来扩展对其接口的管理。例如,下面的实例插入一个对象来拦截一个类实例的未定义的属性:

def decorator(cls): 
class Wrapper: 
def __init__(self,*args): 
self.wrapped = cls(*args) 
def __getattr__(self,name): 
return getattr(self.wrapped,name) 
return Wrapper 
@decorator 
class C: # C = decorator(C) 
def __init__(self,x,y): # Run by Wrapper.__init__ 
self.attr = 'spam' 
x = C(6,7) # 等价于Wrapper(6,7) 
print(x.attr)

在这个例子中,装饰器把类的名称重新绑定到另一个类,这个类在一个封闭的作用域中保持了最初的类。

就像函数装饰器一样,类装饰器通常可以编写为一个创建并返回可调用对象的“工厂”函数。

装饰器嵌套

有时候,一个装饰器不够,装饰器语法允许我们向一个装饰器的函数或方法添加包装器逻辑的多个层。这种形式的装饰器的语法为:

@A 
@B 
@C 
def f(...): 
...

如下这样转换:

def f(...): 
... 
f = A(B(C(f))) 

这里,最初的函数通过3个不同的装饰器传递,每个装饰器处理前一个结果。

装饰器参数

函数装饰器和类装饰器都能接受参数,如下:

@decorator(A,B) 
def F(arg): 
... 
F(99)

自动映射到其对等形式:

def F(arg): 
... 
F = decorator(A,B)(F) 
F(99)

装饰器参数在装饰之前就解析了,并且它们通常用来保持状态信息供随后的调用使用。例如,这个例子中的装饰器函数,可能采用如下形式:

def decorator(A,B): 
# 保存或使用A和B 
def actualDecorator(F): 
# 保存或使用函数 F 
# 返回一个可调用对象 
return callable 
return actualDecorator

以上,这是装饰器的基础知识,接下来将学习编写自己的装饰器。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
學習Python:2小時的每日學習是否足夠?學習Python:2小時的每日學習是否足夠?Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Web開發的Python:關鍵應用程序Web開發的Python:關鍵應用程序Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

python在行動中:現實世界中的例子python在行動中:現實世界中的例子Apr 18, 2025 am 12:18 AM

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python的主要用途:綜合概述Python的主要用途:綜合概述Apr 18, 2025 am 12:18 AM

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的主要目的:靈活性和易用性Python的主要目的:靈活性和易用性Apr 17, 2025 am 12:14 AM

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python:多功能編程的力量Python:多功能編程的力量Apr 17, 2025 am 12:09 AM

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

每天2小時學習Python:實用指南每天2小時學習Python:實用指南Apr 17, 2025 am 12:05 AM

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前By尊渡假赌尊渡假赌尊渡假赌
威爾R.E.P.O.有交叉遊戲嗎?
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版