搜尋
首頁後端開發Python教學详解Python使用simplejson模块解析JSON的方法

1,Json模块介绍
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, JavaScript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。

2,Json的格式
2.1,对象:

{name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"} 
{ 属性 : 值 , 属性 : 值 , 属性 : 值 } 

2.2,数组:
是有顺序的值的集合。一个数组开始于"[",结束于"]",值之间用","分隔。

[ 
{name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"}, {name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"}, 
{name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"} 
] 

另,值可以是字符串、数字、true、false、null,也可以是对象或数组。这些结构都能嵌套。

3,Json的导入导出
这里的write/dump的含义是将Json对象输入到一个python_object中,如果python_object是文件,则dump到文件中;如果是对象,则dump到内存中。这是序列化。

3.1,读取Json文件

import simplejson as json 
f = file('table.json') 
source = f.read() 
target = json.JSONDecoder().decode(source) 
print target 

import simplejson as json 
jsonobject = json.load(file('table.json')) 
print jsonobject 

3.2,显示Json文件
为了显示Json格式好看,原来的Json文件:

[admin@r42h06016.xy2.aliyun.com]$python readJson.py 
[{'Query': 'desc zt1;', 'Message': '{"DescibeTableWithPartSpec": "false", "GetTableMetaString":"{\\"tableName\\":\\"zt1\\",\\"owner\\":\\"1365937150772213\\",\\"createTime\\":1346218114,\\"lastModifiedTime\\":0,\\"columns\\":[{\\"name\\":\\"a\\",\\"type\\":\\"string\\"},{\\"name\\":\\"b\\",\\"type\\":\\"string\\"}],\\"partitionKeys\\":[{\\"name\\":\\"pt\\",\\"type\\":\\"string\\"}]}"}', 'QueryID': '', 'Result': 'OK'}] 

执行文件:

import simplejson as json 
jsonobject = json.load(file('table.json')) 
print json.dumps(jsonobject,sort_keys=True,indent=4) 

显示:

[admin@r42h06016.xy2.aliyun.com]$python readJson.py 
[ 
  { 
    "Message": "{\"DescibeTableWithPartSpec\": \"false\", \"GetTableMetaString\":\"{\\\"tableName\\\":\\\"zt1\\\",\\\"owner\\\":\\\"1365937150772213\\\",\\\"createTime\\\":1346218114,\\\"lastModifiedTime\\\":0,\\\"columns\\\":[{\\\"name\\\":\\\"a\\\",\\\"type\\\":\\\"string\\\"},{\\\"name\\\":\\\"b\\\",\\\"type\\\":\\\"string\\\"}],\\\"partitionKeys\\\":[{\\\"name\\\":\\\"pt\\\",\\\"type\\\":\\\"string\\\"}]}\"}", 
    "Query": "desc zt1;", 
    "QueryID": "", 
    "Result": "OK" 
  } 
] 

3.3,json模块示例:

import json 
# Converting Python to JSON 
json_object = json.write( python_object ) 
# Converting JSON to Python 
python_object = json.read( json_object ) 

3.4,simplejson模块 示例:

import simplejson 
# Converting Python to JSON 
json_object = simplejson.dumps( python_object ) 
# Converting JSON to Python 
python_object = simplejson.loads( json_object ) 

其中的json_object也可以是文件名比如file(“tmp/table.json”)

4,Json数据的解析
假设对于data.json文件如下:

复制代码 代码如下:
{'isSuccess': True, 'errorMsg': '', 'total': 1, 'data': [{'isOnline': True, 'idc': '\xe6\x9d\xad\xe5\xb7\x9e\xe5\xbe\xb7\xe8\x83\x9c\xe6\x9c\xba\xe6\x88\xbf', 'assetsNum': 'B50070100007003', 'responsibilityPerson': '\xe5\xbc\xa0\xe4\xb9\x8b\xe8\xaf\x9a', 'deviceModel': 'PowerEdge 1950', 'serviceTag': '729HH2X', 'ip': '172.16.20.163', 'hostname': 'hzshterm1.alibaba.com', 'manageIp': '172.31.58.223', 'cabinet': 'H05', 'buyTime': '2009-06-29', 'useState': '\xe4\xbd\xbf\xe7\x94\xa8\xe4\xb8\xad', 'memoryInfo': {'amount': 4, 'size': 8192}, 'cpuInfo': {'coreNum': 8, 'l2CacheSize': 6144, 'amount': 2, 'model': 'Intel(R) Xeon(R) CPU           E5405  @ 2.00GHz', 'masterFrequency': 1995}, 'cabinetPositionNum': '', 'outGuaranteeTime': '', 'logicSite': '\xe4\xb8\xad\xe6\x96\x87\xe7\xab\x99'}]} 
首先导入该文件,建立Json对象,并查看类型,已经是dict类型了。
#test.py 
import simplejson as json 
ddata = json.loads(file("data.json")) 
print ddata 
print type(ddata)#<type 'dict'> 

其次,我们以读字典中key 为”data”对应的键值

>>> ddata['data']  //查看字典的方法!

>>>type(ddata['data']) 
<type 'list'> 

发现ddata[‘data']是一个列表,列表就要用序号来查询

>>> ddata['data'][0]     //查看列表的方法!

>>> type(ddata['data'][0]) 
<type 'dict'> 

ddata[‘data']列表的0号元素是个字典。。
好,那我们查查key为idc的键值是多少

>>> ddata['data'][0]['idc']     //查看字典的方法!

>>> ddata['data'][0]['idc']     //查看字典的方法! 
'\xe6\x9d\xad\xe5\xb7\x9e\xe5\xbe\xb7\xe8\x83\x9c\xe6\x9c\xba\xe6\x88\xbf' 
>>> print ddata['data'][0]['idc'] 
杭州德胜机房  

5.一些性能讨论

简单测试了一下,如果用JSON,也就是python2.6以上自带的json处理库,效率还算可以:
1K的数据,2.9GHz的CPU,单核下每秒能dump:36898次。大约是pyamf的5倍。但数据量较大,约为pyamf的1.67倍(1101/656)。

start_time: 1370747463.77
loop_num: 36898
end_time:  1370747464.78

 
再看看simplejson,没有安装C扩展的情况下:

2016324173247058.jpg (592×62)

simplejson,没有安装C扩展,跑出的结果让我惊讶:

start_time: 1370748132.87
loop_num: 1361
end_time:  1370748133.88

效率如此之低下。
 
下面是测试代码:

#! /usr/bin/env python 
#coding=utf-8 
 
import time 
import json 
 
test_data = { 
  'baihe': { 
    'name': unicode('百合', 'utf-8'),    
    'say': unicode('清新,淡雅,花香', 'utf-8'),    
    'grow_time': 0.5,     
    'fruit_time': 0.5,    
    'super_time': 0.5,    
    'total_time': 1,   
    'buy':{'gold':2, } ,    
    'harvest_fruit': 1,   
    'harvest_super': 1,   
    'sale': 1,      
    'level_need': 0,   
    'experience' : 2,   
    'exp_fruit': 1,    
    'exp_super': 1,    
    'used': True, 
  }, 
  '1':{ 
    'interval' : 0.3,  
    'probability' : { 
      '98': {'chips' : (5, 25), }, 
      '2' : {'gem' : (1,1), }, 
    }, 
  }, 
  '2':{ 
    'unlock' : {'chips':1000, 'FC':10,}, 
    'interval' : 12,  
    'probability' : { 
      '70': {'chips' : (120, 250), }, 
      '20': {'gem' : (1,1), }, 
      '10': {'gem' : (2,2), }, 
    }, 
  }, 
  'one':{ 
    '10,5' :{'id':'m01', 'Y':1, 'msg':u'在罐子里发现了一个银币!',}, 
    '3,7' :{'id':'m02', 'Y':10,'msg':u'发现了十个银币!好大一笔钱!',}, 
    '15,5' :{'id':'m03', 'Y':2, 'msg':u'一只老鼠跑了过去',}, 
    '7,4' :{'id':'m04', 'Y':4, 'msg':u'发现了四个生锈的银币……',}, 
    '2,12' :{'id':'m05', 'Y':6, 'msg':u'六个闪亮的银币!',}, 
  },   
   
} 
 
start_time = time.time() 
print "start_time:", start_time 
 
j = 1 
while True: 
  j += 1 
  a = json.dumps(test_data) 
  data_length = len(a) 
  end_time = time.time() 
  if end_time - start_time >= 1 : 
    break 
print "loop_num:", j 
print "end_time: ",end_time 
print data_length ,a 

 
总结:python自带的json,性能可以接受。simplejson,如果没有C扩展加速,效率极其低下。

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
什麼是Python Switch語句?什麼是Python Switch語句?Apr 30, 2025 pm 02:08 PM

本文討論了版本3.10中介紹的Python的新“匹配”語句,該語句與其他語言相同。它增強了代碼的可讀性,並為傳統的if-elif-el提供了性能優勢

Python中有什麼例外組?Python中有什麼例外組?Apr 30, 2025 pm 02:07 PM

Python 3.11中的異常組允許同時處理多個異常,從而改善了並發方案和復雜操作中的錯誤管理。

Python中的功能註釋是什麼?Python中的功能註釋是什麼?Apr 30, 2025 pm 02:06 PM

Python中的功能註釋將元數據添加到函數中,以進行類型檢查,文檔和IDE支持。它們增強了代碼的可讀性,維護,並且在API開發,數據科學和圖書館創建中至關重要。

Python的單位測試是什麼?Python的單位測試是什麼?Apr 30, 2025 pm 02:05 PM

本文討論了Python中的單位測試,其好處以及如何有效編寫它們。它突出顯示了諸如UNITSEST和PYTEST之類的工具進行測試。

Python中的訪問說明符是什麼?Python中的訪問說明符是什麼?Apr 30, 2025 pm 02:03 PM

文章討論了Python中的訪問說明符,這些說明符使用命名慣例表明班級成員的可見性,而不是嚴格的執法。

Python中的__Init __()是什麼?自我如何在其中發揮作用?Python中的__Init __()是什麼?自我如何在其中發揮作用?Apr 30, 2025 pm 02:02 PM

文章討論了Python的\ _ \ _ Init \ _ \ _()方法和Self在初始化對象屬性中的作用。還涵蓋了其他類方法和繼承對\ _ \ _ Init \ _ \ _()的影響。

python中的@classmethod,@staticmethod和實例方法有什麼區別?python中的@classmethod,@staticmethod和實例方法有什麼區別?Apr 30, 2025 pm 02:01 PM

本文討論了python中@classmethod,@staticmethod和實例方法之間的差異,詳細介紹了它們的屬性,用例和好處。它說明瞭如何根據所需功能選擇正確的方法類型和DA

您如何將元素附加到Python數組?您如何將元素附加到Python數組?Apr 30, 2025 am 12:19 AM

Inpython,YouAppendElementStoAlistusingTheAppend()方法。 1)useappend()forsingleelements:my_list.append(4).2)useextend()orextend()或= formultiplelements:my_list.extend.extend(emote_list)ormy_list = [4,5,6] .3)useInsert()forspefificpositions:my_list.insert(1,5).beaware

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器