0x01 介绍了迭代器的概念,即定义了 __iter__() 和 __next__() 方法的对象,或者通过 yield 简化定义的“可迭代对象”,而在一些函数式编程语言(见 0x02 Python 中的函数式编程)中,类似的迭代器常被用于产生特定格式的列表(或序列),这时的迭代器更像是一种数据结构而非函数(当然在一些函数式编程语言中,这两者并无本质差异)。Python 借鉴了 APL, Haskell, and SML 中的某些迭代器的构造方法,并在 itertools 中实现(该模块是通过 C 实现,源代码:/Modules/itertoolsmodule.c)。
itertools 模块提供了如下三类迭代器构建工具:
无限迭代
整合两序列迭代
组合生成器
1. 无限迭代
所谓无限(infinite)是指如果你通过 for...in... 的语法对其进行迭代,将陷入无限循环,包括:
count(start, [step]) cycle(p) repeat(elem [,n])
从名字大概可以猜出它们的用法,既然说是无限迭代,我们自然不会想要将其所有元素依次迭代取出,而通常是结合 map/zip 等方法,将其作为一个取之不尽的数据仓库,与有限长度的可迭代对象进行组合操作:
from itertools import cycle, count, repeat print(count.__doc__) count(start=0, step=1) --> count object Return a count object whose .__next__() method returns consecutive values. Equivalent to: def count(firstval=0, step=1): x = firstval while 1: yield x x += step counter = count() print(next(counter)) print(next(counter)) print(list(map(lambda x, y: x+y, range(10), counter))) odd_counter = map(lambda x: 'Odd#{}'.format(x), count(1, 2)) print(next(odd_counter)) print(next(odd_counter)) 0 1 [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] Odd#1 Odd#3 print(cycle.__doc__) cycle(iterable) --> cycle object Return elements from the iterable until it is exhausted. Then repeat the sequence indefinitely. cyc = cycle(range(5)) print(list(zip(range(6), cyc))) print(next(cyc)) print(next(cyc)) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 0)] 1 2 print(repeat.__doc__) repeat(object [,times]) -> create an iterator which returns the object for the specified number of times. If not specified, returns the object endlessly. print(list(repeat('Py', 3))) rep = repeat('p') print(list(zip(rep, 'y'*3))) ['Py', 'Py', 'Py'] [('p', 'y'), ('p', 'y'), ('p', 'y')]
2. 整合两序列迭代
所谓整合两序列,是指以两个有限序列为输入,将其整合操作之后返回为一个迭代器,最为常见的 zip 函数就属于这一类别,只不过 zip 是内置函数。这一类别完整的方法包括:
accumulate() chain()/chain.from_iterable() compress() dropwhile()/filterfalse()/takewhile() groupby() islice() starmap() tee() zip_longest()
这里就不对所有的方法一一举例说明了,如果想要知道某个方法的用法,基本通过 print(method.__doc__) 就可以了解,毕竟 itertools 模块只是提供了一种快捷方式,并没有隐含什么深奥的算法。这里只对下面几个我觉得比较有趣的方法进行举例说明。
from itertools import cycle, compress, islice, takewhile, count # 这三个方法(如果使用恰当)可以限定无限迭代 # print(compress.__doc__) print(list(compress(cycle('PY'), [1, 0, 1, 0]))) # 像操作列表 l[start:stop:step] 一样操作其它序列 # print(islice.__doc__) print(list(islice(cycle('PY'), 0, 2))) # 限制版的 filter # print(takewhile.__doc__) print(list(takewhile(lambda x: x < 5, count()))) ['P', 'P'] ['P', 'Y'] [0, 1, 2, 3, 4] from itertools import groupby from operator import itemgetter print(groupby.__doc__) for k, g in groupby('AABBC'): print(k, list(g)) db = [dict(name='python', script=True), dict(name='c', script=False), dict(name='c++', script=False), dict(name='ruby', script=True)] keyfunc = itemgetter('script') db2 = sorted(db, key=keyfunc) # sorted by `script' for isScript, langs in groupby(db2, keyfunc): print(', '.join(map(itemgetter('name'), langs))) groupby(iterable[, keyfunc]) -> create an iterator which returns (key, sub-iterator) grouped by each value of key(value). A ['A', 'A'] B ['B', 'B'] C ['C'] c, c++ python, ruby from itertools import zip_longest # 内置函数 zip 以较短序列为基准进行合并, # zip_longest 则以最长序列为基准,并提供补足参数 fillvalue # Python 2.7 中名为 izip_longest print(list(zip_longest('ABCD', '123', fillvalue=0))) [('A', '1'), ('B', '2'), ('C', '3'), ('D', 0)]
3. 组合生成器
关于生成器的排列组合:
product(*iterables, repeat=1):两输入序列的笛卡尔乘积 permutations(iterable, r=None):对输入序列的完全排列组合 combinations(iterable, r):有序版的排列组合 combinations_with_replacement(iterable, r):有序版的笛卡尔乘积 from itertools import product, permutations, combinations, combinations_with_replacement print(list(product(range(2), range(2)))) print(list(product('AB', repeat=2))) [(0, 0), (0, 1), (1, 0), (1, 1)] [('A', 'A'), ('A', 'B'), ('B', 'A'), ('B', 'B')] print(list(combinations_with_replacement('AB', 2))) [('A', 'A'), ('A', 'B'), ('B', 'B')] # 赛马问题:4匹马前2名的排列组合(A^4_2) print(list(permutations('ABCDE', 2))) [('A', 'B'), ('A', 'C'), ('A', 'D'), ('A', 'E'), ('B', 'A'), ('B', 'C'), ('B', 'D'), ('B', 'E'), ('C', 'A'), ('C', 'B'), ('C', 'D'), ('C', 'E'), ('D', 'A'), ('D', 'B'), ('D', 'C'), ('D', 'E'), ('E', 'A'), ('E', 'B'), ('E', 'C'), ('E', 'D')] # 彩球问题:4种颜色的球任意抽出2个的颜色组合(C^4_2) print(list(combinations('ABCD', 2))) [('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D')]

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

Atom編輯器mac版下載
最受歡迎的的開源編輯器

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!