1. 不得不說說二元樹
要了解堆首先得了解二叉樹,在電腦科學中,二元樹是每個節點最多有兩個子樹的樹結構。通常子樹被稱為「左子樹」(left subtree)和「右子樹」(right subtree)。二元樹常被用來實現二元查找樹和二元堆。
二元樹的每個結點至多只有二棵子樹(不存在度大於 2 的結點),二叉樹的子樹有左右之分,次序不能顛倒。二元樹的第i 層至多有2i - 1 個結點;深度為k 的二元樹至多有2k - 1 個結點;對任何一棵二元樹T,如果其終端結點數為n0,度為2 的結點數為n2,則n0 = n2 + 1。
樹和二元樹的三個主要差異:
樹的結點個數至少為 1,而二元樹的結點數量可以是 0
樹中結點的最大度數沒有限制,而二元樹結點的最大度數為 2
樹的結點無左、右之分,而二元樹的結點有左、右之分
二元樹又分為完全二元樹(complete binary tree)和滿二元樹(full binary tree)
滿叉樹:一棵深度為 k,且有 2k - 1 個節點稱為滿叉樹
(深度為 3 的滿叉樹 full binary tree)
完全二元樹:深度為 k,有 n 個節點的二元樹,當且僅當其每一個節點都與深度為 k 的滿二叉樹中序號為 1 至 n 的節點對應時,稱之為完全二叉樹
(深度為 3 的完全二元樹 complete binary tree)
2. 什麼是堆?
堆(二元堆)可以視為一棵完全的二元樹,完全二元樹的一個「優秀」的性質是,除了最底層之外,每一層都是滿的,這使得堆可以利用數組來表示(普通的一般的二元樹通常以鍊錶作為基本容器表示),每一個結點對應數組中的一個元素。
如下圖,是一個堆和數組的相互關係
(堆和陣列的相互關係)
對於給定的某個結點的下標 i,可以很容易的計算出這個結點的父結點、孩子結點的下標:
Parent(i) = floor(i/2),i 的父節點下標
Left(i) = 2i,i 的左子節點下標
Right(i) = 2i + 1,i 的右子節點下標
二元堆一般分為兩種:最大堆和最小堆。
最大堆:
最大堆中的最大元素值出現在根結點(堆頂)
堆中每個父節點的元素值都大於等於其孩子結點(如果存在)
(最大堆)
最小堆:
最小堆中的最小元素值出現在根結點(堆頂)
堆中每個父節點的元素值都小於等於其孩子結點(如果存在)
(最小堆)
3. 堆排序原理
堆排序就是把最大堆堆頂的最大數取出,將剩餘的堆繼續調整為最大堆,再次將堆頂的最大數取出,這個過程持續到剩餘數只有一個時結束。在堆中定義以下幾個操作:
最大堆調整(Max-Heapify):將堆的末端子節點作調整,使得子節點永遠小於父節點
建立最大堆(Build-Max-Heap):將堆所有資料重新排序,使其成為最大堆
堆排序(Heap-Sort):移除位元在第一個資料的根節點,並做最大堆調整的遞歸運算
在繼續進行下面的討論之前,需要注意的一個問題是:數組都是 Zero-Based,這意味著我們的堆資料結構模型要改變
(Zero-Based)
對應的,幾個計算公式也要做出相應調整:
Parent(i) = floor((i-1)/2),i 的父節點下標
Left(i) = 2i + 1,i 的左子節點下標
Right(i) = 2(i + 1),i 的右子節點下標
最大堆調整(MAX‐HEAPIFY)的作用是保持最大堆的性質,是創建最大堆的核心子程序,作用過程如圖所示:
(Max-Heapify)
1 回の調整後もヒープはヒープ プロパティに違反しているため、ヒープ全体がヒープ プロパティを満たすようにするために再帰的テストが必要です。これは JavaScript で次のように表現できます。
/** * 从 index 开始检查并保持最大堆性质 * * @array * * @index 检查的起始下标 * * @heapSize 堆大小 * **/ function maxHeapify(array, index, heapSize) { var iMax = index, iLeft = 2 * index + 1, iRight = 2 * (index + 1); if (iLeft < heapSize && array[index] < array[iLeft]) { iMax = iLeft; } if (iRight < heapSize && array[iMax] < array[iRight]) { iMax = iRight; } if (iMax != index) { swap(array, iMax, index); maxHeapify(array, iMax, heapSize); // 递归调整 } } function swap(array, i, j) { var temp = array[i]; array[i] = array[j]; array[j] = temp; }
/** * 从 index 开始检查并保持最大堆性质 * * @array * * @index 检查的起始下标 * * @heapSize 堆大小 * **/ function maxHeapify(array, index, heapSize) { var iMax, iLeft, iRight; while (true) { iMax = index; iLeft = 2 * index + 1; iRight = 2 * (index + 1); if (iLeft < heapSize && array[index] < array[iLeft]) { iMax = iLeft; } if (iRight < heapSize && array[iMax] < array[iRight]) { iMax = iRight; } if (iMax != index) { swap(array, iMax, index); index = iMax; } else { break; } } } function swap(array, i, j) { var temp = array[i]; array[i] = array[j]; array[j] = temp; }
function buildMaxHeap(array, heapSize) { var i, iParent = Math.floor((heapSize - 1) / 2); for (i = iParent; i >= 0; i--) { maxHeapify(array, i, heapSize); } }
function heapSort(array, heapSize) { buildMaxHeap(array, heapSize); for (int i = heapSize - 1; i > 0; i--) { swap(array, 0, i); maxHeapify(array, 0, i); } }
4.JavaScript 言語の実装
最後に、上記を次のように完全な JavaScript コードにまとめます。
function heapSort(array) { function swap(array, i, j) { var temp = array[i]; array[i] = array[j]; array[j] = temp; } function maxHeapify(array, index, heapSize) { var iMax, iLeft, iRight; while (true) { iMax = index; iLeft = 2 * index + 1; iRight = 2 * (index + 1); if (iLeft < heapSize && array[index] < array[iLeft]) { iMax = iLeft; } if (iRight < heapSize && array[iMax] < array[iRight]) { iMax = iRight; } if (iMax != index) { swap(array, iMax, index); index = iMax; } else { break; } } } function buildMaxHeap(array) { var i, iParent = Math.floor(array.length / 2) - 1; for (i = iParent; i >= 0; i--) { maxHeapify(array, i, array.length); } } function sort(array) { buildMaxHeap(array); for (var i = array.length - 1; i > 0; i--) { swap(array, 0, i); maxHeapify(array, 0, i); } return array; } return sort(array); }
5. ヒープソートアルゴリズムの適用
(1) アルゴリズムのパフォーマンス/複雑さ
ヒープソートの時間計算量は非常に安定しており (入力データの影響を受けないことがわかります)、最良の場合でも最悪の場合でも O(n㏒n) の計算量です。
ただし、その空間の複雑さは実装ごとに異なります。 2 つの一般的な複雑さ、O(n) と O(1) については上で説明しました。スペースを節約するという原則に従って、O(1) 複雑さの方法をお勧めします。
(2) アルゴリズムの安定性
ヒープソートには多数のスクリーニングと移動プロセスが含まれ、不安定なソートアルゴリズムです。
(3) アルゴリズム適用シナリオ
ヒープのソートは、ヒープの確立と調整のプロセスで比較的大きなオーバーヘッドを引き起こすため、要素が少ない場合には適していません。ただし、要素がたくさんある場合には、それでも良い選択です。特に、「最初の n 個の最大数」などの問題を解く場合、ほぼ推奨されるアルゴリズムです。

從C/C 轉向JavaScript需要適應動態類型、垃圾回收和異步編程等特點。 1)C/C 是靜態類型語言,需手動管理內存,而JavaScript是動態類型,垃圾回收自動處理。 2)C/C 需編譯成機器碼,JavaScript則為解釋型語言。 3)JavaScript引入閉包、原型鍊和Promise等概念,增強了靈活性和異步編程能力。

不同JavaScript引擎在解析和執行JavaScript代碼時,效果會有所不同,因為每個引擎的實現原理和優化策略各有差異。 1.詞法分析:將源碼轉換為詞法單元。 2.語法分析:生成抽象語法樹。 3.優化和編譯:通過JIT編譯器生成機器碼。 4.執行:運行機器碼。 V8引擎通過即時編譯和隱藏類優化,SpiderMonkey使用類型推斷系統,導致在相同代碼上的性能表現不同。

JavaScript在現實世界中的應用包括服務器端編程、移動應用開發和物聯網控制:1.通過Node.js實現服務器端編程,適用於高並發請求處理。 2.通過ReactNative進行移動應用開發,支持跨平台部署。 3.通過Johnny-Five庫用於物聯網設備控制,適用於硬件交互。

我使用您的日常技術工具構建了功能性的多租戶SaaS應用程序(一個Edtech應用程序),您可以做同樣的事情。 首先,什麼是多租戶SaaS應用程序? 多租戶SaaS應用程序可讓您從唱歌中為多個客戶提供服務

本文展示了與許可證確保的後端的前端集成,並使用Next.js構建功能性Edtech SaaS應用程序。 前端獲取用戶權限以控制UI的可見性並確保API要求遵守角色庫

JavaScript是現代Web開發的核心語言,因其多樣性和靈活性而廣泛應用。 1)前端開發:通過DOM操作和現代框架(如React、Vue.js、Angular)構建動態網頁和單頁面應用。 2)服務器端開發:Node.js利用非阻塞I/O模型處理高並發和實時應用。 3)移動和桌面應用開發:通過ReactNative和Electron實現跨平台開發,提高開發效率。

JavaScript的最新趨勢包括TypeScript的崛起、現代框架和庫的流行以及WebAssembly的應用。未來前景涵蓋更強大的類型系統、服務器端JavaScript的發展、人工智能和機器學習的擴展以及物聯網和邊緣計算的潛力。

JavaScript是現代Web開發的基石,它的主要功能包括事件驅動編程、動態內容生成和異步編程。 1)事件驅動編程允許網頁根據用戶操作動態變化。 2)動態內容生成使得頁面內容可以根據條件調整。 3)異步編程確保用戶界面不被阻塞。 JavaScript廣泛應用於網頁交互、單頁面應用和服務器端開發,極大地提升了用戶體驗和跨平台開發的靈活性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

Atom編輯器mac版下載
最受歡迎的的開源編輯器

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)