MongoDB除了基本的查询功能,还提供了很多强大的聚合工具,其中简单的可计算集合中的文档个数, 复杂的可利用MapReduce做复杂数据分析. 1.count count返回集合中的文档数量 db.refactor.count() 不管集合有多大,都能很快的返回文档数量. 可以传递查询,MongoDB会
MongoDB除了基本的查询功能,还提供了很多强大的聚合工具,其中简单的可计算集合中的文档个数,
复杂的可利用MapReduce做复杂数据分析.
1.count
count返回集合中的文档数量
db.refactor.count()
不管集合有多大,都能很快的返回文档数量.
可以传递查询,MongoDB会计算查询结果的数量
db.refactor.count({"username":"refactor"})
但是增加查询条件会使count变慢.
2.distinct
distinct用来找出给定键的所有不同值.使用时必须指定集合和键.
如:
db.runCommand({"distinct":"refactor","key":"username"})
3.group
group先选定分组所依据的键,MongoDB将会将集合依据选定键值的不同分成若干组.然后可以通过聚合每一组内的文档,
产生一个结果文档.
如:
db.runCommand(
{
"group":
{
"ns":"refactor",
"key":{"username":true},
"initial":{"count":0},
"$reduce":function(doc,prev)
{
prev.count++;
},
"condition":{"age":{"$gt":40}}
}
}
)
"ns":"refactor",
指定要进行分组的集合
"key":{"username":true},
指定文档分组的依据,这里是username键,所有username键的值相等的被划分到一组,true为返回键username的值
"initial":{"count":0},
每一组reduce函数调用的初始个数.每一组的所有成员都会使用这个累加器.
"$reduce":function(doc,prev){...}
每个文档都对应的调用一次.系统会传递两个参数:当前文档和累加器文档.
"condition":{"age":{"$gt":40}}
这个age的值大于40的条件
4.使用完成器
完成器用于精简从数据库传到用户的数据.group命令的输出一定要能放在单个数据库相应中.
"finalize"附带一个函数,在数组结果传递到客户端之前被调用一次.
db.runCommand(
{
"group":
{
"ns":"refactor",
"key":{"username":true},
"initial":{"count":0},
"$reduce":function(doc,prev)
{
prev.count++;
},
"finalize":function(doc)
{
doc.num=doc.count;
delete doc.count;
}
}
}
)
finalize能修改传递的参数也能返回新值.
5.将数组作为键使用
有些时候分组所依据的条件很复杂,不仅是一个键.比如要使用group计算每个类别有多篇博客文章.由于有很多作者,
给文章分类时可能不规律的使用了大小写.所以,如果要是按类别名来分组,最后"MongoDB"和"mongodb"就是不同的组.
为了消除这种大小写的影响,就要定义一个函数来确定文档所依据的键.
定义分组要用到$keyf
db.runCommand(
{
"group":
{
"ns":"refactor",
"$keyf":function(doc){return {"username":doc.username.toLowerCase()}},
"initial":{"count":0},
"$reduce":function(doc,prev)
{
prev.count++;
}
}
}
)
6.MapReduce
count,distinct,group能做的事情MapReduce都能做.它是一个可以轻松并行化到多个服务器的聚合方法.它会
拆分问题,再将各个部分发送到不同机器上,让每台机器完成一部分.当所有机器都完成时候,再把结果汇集起来形成
最终完整的结果.
MapReduce需要几个步骤:
1.映射,将操作映射到集合中的每个文档.这个操作要么什么都不做,要么 产生一个键和n个值.
2.洗牌,按照键分组,并将产生的键值组成列表放到对应键中.
3.化简,把列表中的值 化简 成一个单值,这个值被返回.
4.重新洗牌,直到每个键的列表只有一个值为止,这个值就是最终结果.
MapReduce的速度比group慢,group也很慢.在应用程序中,最好不要用MapReduce,可以在后台运行MapReduce
创建一个保存结果的集合,可以对这个集合进行实时查询.
找出集合中的所有键
MongoDB没有模式,所以并不知晓每个文档有多少个键.通常找到集合的所有键的做好方式是用MapReduce.
在映射阶段,想得到文档中的每个键.map函数使用emit 返回要处理的值.emit会给MapReduce一个键和一个值.
这里用emit将文档某个键的记数(count)返回({count:1}).我们为每个键单独记数,所以为文档中的每一个键调用一次emit,
this是当前文档的引用:
map=function(){
for(var key in this)
{
emit(key,{count:1})
}
};
这样返回了许许多多的{count:1}文档,每一个都与集合中的一个键相关.这种有一个或多个{count:1}文档组成的数组,
会传递给reduce函数.reduce函数有两个参数,一个是key,也就是emit返回的第一个值,另一个参数是数组,由一个或者多个
对应键的{count:1}文档组成.
reduce=function(key,emits){
total=0;
for(var i in emits){
total+=emits[i].count;
}
return {count:total};
}
reduce要能被反复被调用,不论是映射环节还是前一个化简环节.reduce返回的文档必须能作为reduce的
第二个参数的一个元素.如x键映射到了3个文档{"count":1,id:1},{"count":1,id:2},{"count":1,id:3}
其中id键用于区别.MongoDB可能这样调用reduce:
>r1=reduce("x",[{"count":1,id:1},{"count":1,id:2}])
{count:2}
>r2=reduce("x",[{"count":1,id:3}])
{count:1}
>reduce("x",[r1,r2])
{count:3}
reduce应该能处理emit文档和其他reduce结果的各种集合.
如:
mr=db.runCommand(
{
"mapreduce":"refactor",
"map":map,
"reduce":reduce,
"out":{inline:1}
}
)
或:
db.refactor.mapReduce(map,reduce,{out:{inline:1}})

InnoDB使用redologs和undologs確保數據一致性和可靠性。 1.redologs記錄數據頁修改,確保崩潰恢復和事務持久性。 2.undologs記錄數據原始值,支持事務回滾和MVCC。

EXPLAIN命令的關鍵指標包括type、key、rows和Extra。 1)type反映查詢的訪問類型,值越高效率越高,如const優於ALL。 2)key顯示使用的索引,NULL表示無索引。 3)rows預估掃描行數,影響查詢性能。 4)Extra提供額外信息,如Usingfilesort提示需要優化。

Usingtemporary在MySQL查詢中表示需要創建臨時表,常見於使用DISTINCT、GROUPBY或非索引列的ORDERBY。可以通過優化索引和重寫查詢避免其出現,提升查詢性能。具體來說,Usingtemporary出現在EXPLAIN輸出中時,意味著MySQL需要創建臨時表來處理查詢。這通常發生在以下情況:1)使用DISTINCT或GROUPBY時進行去重或分組;2)ORDERBY包含非索引列時進行排序;3)使用複雜的子查詢或聯接操作。優化方法包括:1)為ORDERBY和GROUPB

MySQL/InnoDB支持四種事務隔離級別:ReadUncommitted、ReadCommitted、RepeatableRead和Serializable。 1.ReadUncommitted允許讀取未提交數據,可能導致臟讀。 2.ReadCommitted避免臟讀,但可能發生不可重複讀。 3.RepeatableRead是默認級別,避免臟讀和不可重複讀,但可能發生幻讀。 4.Serializable避免所有並發問題,但降低並發性。選擇合適的隔離級別需平衡數據一致性和性能需求。

MySQL適合Web應用和內容管理系統,因其開源、高性能和易用性而受歡迎。 1)與PostgreSQL相比,MySQL在簡單查詢和高並發讀操作上表現更好。 2)相較Oracle,MySQL因開源和低成本更受中小企業青睞。 3)對比MicrosoftSQLServer,MySQL更適合跨平台應用。 4)與MongoDB不同,MySQL更適用於結構化數據和事務處理。

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL學習路徑包括基礎知識、核心概念、使用示例和優化技巧。 1)了解表、行、列、SQL查詢等基礎概念。 2)學習MySQL的定義、工作原理和優勢。 3)掌握基本CRUD操作和高級用法,如索引和存儲過程。 4)熟悉常見錯誤調試和性能優化建議,如合理使用索引和優化查詢。通過這些步驟,你將全面掌握MySQL的使用和優化。

MySQL在現實世界的應用包括基礎數據庫設計和復雜查詢優化。 1)基本用法:用於存儲和管理用戶數據,如插入、查詢、更新和刪除用戶信息。 2)高級用法:處理複雜業務邏輯,如電子商務平台的訂單和庫存管理。 3)性能優化:通過合理使用索引、分區表和查詢緩存來提升性能。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。