可以通过多种方式将数据导入hive表,.通过外部表导入,用户在hive上建external表,建表的同时指定hdfs路径,在数据拷贝到指定hdf
可以通过多种方式将数据导入hive表
1.通过外部表导入用户在hive上建external表,建表的同时指定hdfs路径,在数据拷贝到指定hdfs路径的同时,也同时完成数据插入external表。
例如:
编辑文件test.txt
$ cat test.txt
1 hello
2 world
3 test
4 case
字段之间以'\t'分割
启动hive:
$ hive
建external表:
hive> CREATE EXTERNAL TABLE MYTEST(num INT, name STRING)
> COMMENT 'this is a test'
> ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
> STORED AS TEXTFILE
> LOCATION '/data/test';
OK
Time taken: 0.714 seconds
hive> show tables;
OK
mytest
partition_test
partition_test_input
test
Time taken: 0.07 seconds
hive> desc mytest ;
OK
num int
name string
Time taken: 0.121 seconds|
数据拷贝到hdfs:
$ Hadoop fs -put test.txt /data/test
查看hive表数据:
hive> select * from mytest;
OK
1 hello
2 world
3 test
4 case
Time taken: 0.375 seconds
hive> select num from mytest;
Total MapReduce jobs = 1
Launching Job 1 out of 1
......
Total MapReduce CPU Time Spent: 510 msec
OK
1
2
3
4
Time taken: 27.157 seconds
这种方式常常用于当hdfs上有一些历史数据,而我们需要在这些数据上做一些hive的操作时使用。这种方式避免了数据拷贝开销
2.从本地导入数据不在hdfs上,直接从本地导入hive表
文件/home/work/test.txt内容同上
建表:
hive> CREATE TABLE MYTEST2(num INT, name STRING)
> COMMENT 'this is a test2'
> ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
> STORED AS TEXTFILE;
OK
Time taken: 0.077 seconds
导数据入表:
hive> LOAD DATA LOCAL INPATH '/home/work/test.txt' INTO TABLE MYTEST2;
Copying data from file:/home/work/test.txt
Copying file: file:/home/work/test.txt
Loading data to table default.mytest2
OK
Time taken: 0.24 seconds
查看数据:
hive> select * from MYTEST2;
OK
1 hello
2 world
3 test
4 case
Time taken: 0.11 seconds
这种方式导入的本地数据可以是一个文件,,一个文件夹或者通配符,需要注意的是,如果是文件夹,文件夹内不能包含子目录,同样,通配符只能通配文件。
则可以使用下述命令直接将数据导入hive表:
hive> CREATE TABLE MYTEST3(num INT, name STRING)
> COMMENT "this is a test3"
> ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
> STORED AS TEXTFILE;
OK
Time taken: 4.735 seconds
hive> LOAD DATA INPATH '/data/test/test.txt' INTO TABLE MYTEST3;
Loading data to table default.mytest3
OK
Time taken: 0.337 seconds
hive> select * from MYTEST3 ;
OK
1 hello
2 world
3 test
4 case
Time taken: 0.227 seconds
4. 从其它表导入数据:hive> CREATE EXTERNAL TABLE MYTEST4(num INT) ;
OK
Time taken: 0.091 seconds
hive> FROM MYTEST3 test3
> INSERT OVERWRITE TABLE MYTEST4
> select test3.num where;
Total MapReduce jobs = 2
Launching Job 1 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201207230024_0002, Tracking URL = :50030/jobdetails.jsp?jobid=job_201207230024_0002
Kill Command = /home/work/hadoop/hadoop-1.0.3/libexec/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201207230024_0002
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2012-07-23 18:59:02,365 Stage-1 map = 0%, reduce = 0%
2012-07-23 18:59:08,417 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.62 sec
2012-07-23 18:59:09,435 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.62 sec
2012-07-23 18:59:10,445 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.62 sec
2012-07-23 18:59:11,455 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.62 sec
2012-07-23 18:59:12,470 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.62 sec
2012-07-23 18:59:13,489 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.62 sec
2012-07-23 18:59:14,508 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 0.62 sec
MapReduce Total cumulative CPU time: 620 msec
Ended Job = job_201207230024_0002
Ended Job = -174856900, job is filtered out (removed at runtime).
Moving data to: hdfs://localhost:9000/tmp/hive-work/hive_2012-07-23_18-58-44_166_189728317691010041/-ext-10000
Loading data to table default.mytest4
Deleted hdfs://localhost:9000/user/hive/warehouse/mytest4
Table default.mytest4 stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 2, raw_data_size: 0]
1 Rows loaded to mytest4
MapReduce Jobs Launched:
Job 0: Map: 1 Accumulative CPU: 0.62 sec HDFS Read: 242 HDFS Write: 2 SUCESS
Total MapReduce CPU Time Spent: 620 msec
OK
Time taken: 30.663 seconds
hive> select * from mytest4;
OK
2
Time taken: 0.103 seconds

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于索引优化器工作原理的相关内容,其中包括了MySQL Server的组成,MySQL优化器选择索引额原理以及SQL成本分析,最后通过 select 查询总结整个查询过程,下面一起来看一下,希望对大家有帮助。

数据库系统由4个部分构成:1、数据库,是指长期存储在计算机内的,有组织,可共享的数据的集合;2、硬件,是指构成计算机系统的各种物理设备,包括存储所需的外部设备;3、软件,包括操作系统、数据库管理系统及应用程序;4、人员,包括系统分析员和数据库设计人员、应用程序员(负责编写使用数据库的应用程序)、最终用户(利用接口或查询语言访问数据库)、数据库管理员(负责数据库的总体信息控制)。

数据库的“完整性”是指数据的正确性和相容性。完整性是指数据库中数据在逻辑上的一致性、正确性、有效性和相容性。完整性对于数据库系统的重要性:1、数据库完整性约束能够防止合法用户使用数据库时向数据库中添加不合语义的数据;2、合理的数据库完整性设计,能够同时兼顾数据库的完整性和系统的效能;3、完善的数据库完整性有助于尽早发现应用软件的错误。

结构层次是“数据库→数据表→记录→字段”;字段构成记录,记录构成数据表,数据表构成了数据库。数据库是一个完整的数据的记录的整体,一个数据库包含0到N个表,一个表包含0到N个字段,记录是表中的行。

mysql查询为什么会慢,关于这个问题,在实际开发经常会遇到,而面试中,也是个高频题。遇到这种问题,我们一般也会想到是因为索引。那除开索引之外,还有哪些因素会导致数据库查询变慢呢?

go语言可以写数据库。Go语言和其他语言不同的地方是,Go官方没有提供数据库驱动,而是编写了开发数据库驱动的标准接口,开发者可以根据定义的接口来开发相应的数据库驱动;这样做的好处在于,只要是按照标准接口开发的代码,以后迁移数据库时,不需要做任何修改,极大方便了后期的架构调整。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于mysql获取时间、格式转换各类操作方法的相关内容, 下面一起来看一下,希望对大家有帮助。

数据库系统的核心和基础是“数据模型”。计算机不能直接处理现实世界中的客观事物,而数据库系统正是使用计算机技术对客观事物进行管理,因此就需要对客观事物进行抽象、模拟,以建立适合于数据库系统进行管理的数据模型。数据模型从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供一个抽象的框架。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver CS6
視覺化網頁開發工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),