HDFS在设计上仿照Linux下的文件操作命令,所以对Linux文件命令熟悉的小伙伴在这里很好上手。另外在Hadoop DFS中没有pwd概念,所有都需要全路径。(本文基于版本2.5 CDH 5.2.1) 列出命令列表、格式和帮助,以及选择一个非参数文件配置的namenode。 hdfs dfs -
HDFS在设计上仿照Linux下的文件操作命令,所以对Linux文件命令熟悉的小伙伴在这里很好上手。另外在Hadoop DFS中没有pwd概念,所有都需要全路径。(本文基于版本2.5 CDH 5.2.1)
列出命令列表、格式和帮助,以及选择一个非参数文件配置的namenode。
hdfs dfs -usage hadoop dfs -usage ls hadoop dfs -help -fs <local|namenode:port> specify a namenode hdfs dfs -fs hdfs://test1:9000 -ls /
——————————————————————————–
-df [-h] [path …] :
Shows the capacity, free and used space of the filesystem. If the filesystem has
multiple partitions, and no path to a particular partition is specified, then
the status of the root partitions will be shown.
$ hdfs dfs -df Filesystem Size Used Available Use% hdfs://test1:9000 413544071168 98304 345612906496 0%
——————————————————————————–
-mkdir [-p] path … :
Create a directory in specified location.
-p Do not fail if the directory already exists
-rmdir dir … :
Removes the directory entry specified by each directory argument, provided it is
empty.
hdfs dfs -mkdir /tmp hdfs dfs -mkdir /tmp/txt hdfs dfs -rmdir /tmp/txt hdfs dfs -mkdir -p /tmp/txt/hello
——————————————————————————–
-copyFromLocal [-f] [-p] localsrc … dst :
Identical to the -put command.
-copyToLocal [-p] [-ignoreCrc] [-crc] src … localdst :
Identical to the -get command.
-moveFromLocal localsrc …
Same as -put, except that the source is deleted after it’s copied.
-put [-f] [-p] localsrc …
Copy files from the local file system into fs. Copying fails if the file already
exists, unless the -f flag is given. Passing -p preserves access and
modification times, ownership and the mode. Passing -f overwrites the
destination if it already exists.
-get [-p] [-ignoreCrc] [-crc] src … localdst :
Copy files that match the file pattern src to the local name. src is kept.
When copying multiple files, the destination must b/e a directory. Passing -p
preserves access and modification times, ownership and the mode.
-getmerge [-nl] src localdst :
Get all the files in the directories that match the source file pattern and
merge and sort them to only one file on local fs. src is kept.
-nl Add a newline character at the end of each file.
-cat [-ignoreCrc] src … :
Fetch all files that match the file pattern src and display their content on
stdout.
#通配符? * {} [] hdfs dfs -cat /tmp/*.txt Hello, Hadoop Hello, HDFS hdfs dfs -cat /tmp/h?fs.txt Hello, HDFS hdfs dfs -cat /tmp/h{a,d}*.txt Hello, Hadoop Hello, HDFS hdfs dfs -cat /tmp/h[a-d]*.txt Hello, Hadoop Hello, HDFS echo "Hello, Hadoop" > hadoop.txt echo "Hello, HDFS" > hdfs.txt dd if=/dev/zero of=/tmp/test.zero bs=1M count=1024 1024+0 records in 1024+0 records out 1073741824 bytes (1.1 GB) copied, 0.93978 s, 1.1 GB/s hdfs dfs -moveFromLocal /tmp/test.zero /tmp hdfs dfs -put *.txt /tmp
——————————————————————————–
-ls [-d] [-h] [-R] [path …] :
List the contents that match the specified file pattern. If path is not
specified, the contents of /user/currentUser will be listed. Directory entries
are of the form:
permissions – userId groupId sizeOfDirectory(in bytes)
modificationDate(yyyy-MM-dd HH:mm) directoryName
and file entries are of the form:
permissions numberOfReplicas userId groupId sizeOfFile(in bytes)
modificationDate(yyyy-MM-dd HH:mm) fileName
-d Directories are listed as plain files.
-h Formats the sizes of files in a human-readable fashion rather than a number
of bytes.
-R Recursively list the contents of directories.
hdfs dfs -ls /tmp hdfs dfs -ls -d /tmp hdfs dfs -ls -h /tmp Found 4 items -rw-r--r-- 3 hdfs supergroup 14 2014-12-18 10:00 /tmp/hadoop.txt -rw-r--r-- 3 hdfs supergroup 12 2014-12-18 10:00 /tmp/hdfs.txt -rw-r--r-- 3 hdfs supergroup 1 G 2014-12-18 10:19 /tmp/test.zero drwxr-xr-x - hdfs supergroup 0 2014-12-18 10:07 /tmp/txt hdfs dfs -ls -R -h /tmp -rw-r--r-- 3 hdfs supergroup 14 2014-12-18 10:00 /tmp/hadoop.txt -rw-r--r-- 3 hdfs supergroup 12 2014-12-18 10:00 /tmp/hdfs.txt -rw-r--r-- 3 hdfs supergroup 1 G 2014-12-18 10:19 /tmp/test.zero drwxr-xr-x - hdfs supergroup 0 2014-12-18 10:07 /tmp/txt drwxr-xr-x - hdfs supergroup 0 2014-12-18 10:07 /tmp/txt/hello
——————————————————————————–
-checksum src … :
Dump checksum information for files that match the file pattern src to stdout.
Note that this requires a round-trip to a datanode storing each block of the
file, and thus is not efficient to run on a large number of files. The checksum
of a file depends on its content, block size and the checksum algorithm and
parameters used for creating the file.
hdfs dfs -checksum /tmp/test.zero /tmp/test.zero MD5-of-262144MD5-of-512CRC32C 000002000000000000040000f960570129a4ef3a7e179073adceae97
——————————————————————————–
-appendToFile localsrc … dst :
Appends the contents of all the given local files to the given dst file. The dst
file will be created if it does not exist. If localSrc is -, then the input is
read from stdin.
hdfs dfs -appendToFile *.txt hello.txt hdfs dfs -cat hello.txt Hello, Hadoop Hello, HDFS
——————————————————————————–
-tail [-f] file :
Show the last 1KB of the file.
hdfs dfs -tail -f hello.txt #waiting for output. then Ctrl + C #another terminal hdfs dfs -appendToFile - hello.txt #then type something
——————————————————————————–
-cp [-f] [-p | -p[topax]] src …
Copy files that match the file pattern src to a destination. When copying
multiple files, the destination must be a directory. Passing -p preserves status
[topax] (timestamps, ownership, permission, ACLs, XAttr). If -p is specified
with no arg, then preserves timestamps, ownership, permission. If -pa is
permission. Passing -f overwrites the destination if it already exists. raw
namespace extended attributes are preserved if (1) they are supported (HDFS
only) and, (2) all of the source and target pathnames are in the /.reserved/raw
hierarchy. raw namespace xattr preservation is determined solely by the presence
(or absence) of the /.reserved/raw prefix and not by the -p option.
-mv src … dst :
Move files that match the specified file pattern src to a destination dst.
When moving multiple files, the destination must be a directory.
-rm [-f] [-r|-R] [-skipTrash] src … :
Delete all files that match the specified file pattern. Equivalent to the Unix
command “rm src”
-skipTrash option bypasses trash, if enabled, and immediately deletes src
-f If the file does not exist, do not display a diagnostic message or
modify the exit status to reflect an error.
-[rR] Recursively deletes directories
-stat [format] path … :
Print statistics about the file/directory at path in the specified format.
Format accepts filesize in blocks (%b), group name of owner(%g), filename (%n),
block size (%o), replication (%r), user name of owner(%u), modification date
(%y, %Y)
hdfs dfs -stat /tmp/hadoop.txt 2014-12-18 02:00:08 hdfs dfs -cp -p -f /tmp/hello.txt /tmp/hello.txt.bak hdfs dfs -stat /tmp/hadoop.txt.bak hdfs dfs -rm /tmp/not_exists rm: `/tmp/not_exists': No such file or directory echo $? 1 hdfs dfs -rm -f /tmp/123321123123123 echo $? 0
——————————————————————————–
-count [-q] path … :
Count the number of directories, files and bytes under the paths
that match the specified file pattern. The output columns are:
DIR_COUNT FILE_COUNT CONTENT_SIZE FILE_NAME or
QUOTA REMAINING_QUOTA SPACE_QUOTA REMAINING_SPACE_QUOTA
DIR_COUNT FILE_COUNT CONTENT_SIZE FILE_NAME
-du [-s] [-h] path … :
Show the amount of space, in bytes, used by the files that match the specified
file pattern. The following flags are optional:
-s Rather than showing the size of each individual file that matches the
pattern, shows the total (summary) size.
-h Formats the sizes of files in a human-readable fashion rather than a number
of bytes.
Note that, even without the -s option, this only shows size summaries one level
deep into a directory.
The output is in the form
size name(full path)
hdfs dfs -count /tmp 3 3 1073741850 /tmp hdfs dfs -du /tmp 14 /tmp/hadoop.txt 12 /tmp/hdfs.txt 1073741824 /tmp/test.zero 0 /tmp/txt hdfs dfs -du -s /tmp 1073741850 /tmp hdfs dfs -du -s -h /tmp 1.0 G /tmp
——————————————————————————–
-chgrp [-R] GROUP PATH… :
This is equivalent to -chown … :GROUP …
-chmod [-R] MODE[,MODE]… | OCTALMODE PATH… :
Changes permissions of a file. This works similar to the shell’s chmod command
with a few exceptions.
-R modifies the files recursively. This is the only option currently
supported.
MODE Mode is the same as mode used for the shell’s command. The only
letters recognized are ‘rwxXt’, e.g. +t,a+r,g-w,+rwx,o=r.
OCTALMODE Mode specifed in 3 or 4 digits. If 4 digits, the first may be 1 or
0 to turn the sticky bit on or off, respectively. Unlike the
shell command, it is not possible to specify only part of the
mode, e.g. 754 is same as u=rwx,g=rx,o=r.
If none of ‘augo’ is specified, ‘a’ is assumed and unlike the shell command, no
umask is applied.
-chown [-R] [OWNER][:[GROUP]] PATH… :
Changes owner and group of a file. This is similar to the shell’s chown command
with a few exceptions.
-R modifies the files recursively. This is the only option currently
supported.
If only the owner or group is specified, then only the owner or group is
modified. The owner and group names may only consist of digits, alphabet, and
any of [-_./@a-zA-Z0-9]. The names are case sensitive.
WARNING: Avoid using ‘.’ to separate user name and group though Linux allows it.
If user names have dots in them and you are using local file system, you might
see surprising results since the shell command ‘chown’ is used for local files.
-touchz path … :
Creates a file of zero length at path with current time as the timestamp of
that path. An error is returned if the file exists with non-zero length
hdfs dfs -mkdir -p /user/spark/tmp hdfs dfs -chown -R spark:hadoop /user/spark hdfs dfs -chmod -R 775 /user/spark/tmp hdfs dfs -ls -d /user/spark/tmp drwxrwxr-x - spark hadoop 0 2014-12-18 14:51 /user/spark/tmp hdfs dfs -chmod +t /user/spark/tmp #user:spark hdfs dfs -touchz /user/spark/tmp/own_by_spark #user:hadoop useradd -g hadoop hadoop su - hadoop id uid=502(hadoop) gid=492(hadoop) groups=492(hadoop) hdfs dfs -rm /user/spark/tmp/own_by_spark rm: Permission denied by sticky bit setting: user=hadoop, inode=own_by_spark #使用超级管理员(dfs.permissions.superusergroup = hdfs),可以无视sticky位设置
——————————————————————————–
-test -[defsz] path :
Answer various questions about path, with result via exit status.
-d return 0 if path is a directory.
-e return 0 if path exists.
-f return 0 if path is a file.
-s return 0 if file path is greater than zero bytes in size.
-z return 0 if file path is zero bytes in size, else return 1.
hdfs dfs -test -d /tmp echo $? 0 hdfs dfs -test -f /tmp/txt echo $? 1
——————————————————————————–
-setrep [-R] [-w] rep path … :
Set the replication level of a file. If path is a directory then the command
recursively changes the replication factor of all files under the directory tree
rooted at path.
-w It requests that the command waits for the replication to complete. This
can potentially take a very long time.
hdfs fsck /tmp/test.zero -blocks -locations Average block replication: 3.0 hdfs dfs -setrep -w 4 /tmp/test.zero Replication 4 set: /tmp/test.zero Waiting for /tmp/test.zero .... done hdfs fsck /tmp/test.zero -blocks Average block replication: 4.0
本文出自:http://debugo.com, 原文地址:http://debugo.com/hdfs-cmd1/, 感谢原作者分享。

InnoDBBufferPool通過緩存數據和索引頁來減少磁盤I/O,提升數據庫性能。其工作原理包括:1.數據讀取:從BufferPool中讀取數據;2.數據寫入:修改數據後寫入BufferPool並定期刷新到磁盤;3.緩存管理:使用LRU算法管理緩存頁;4.預讀機制:提前加載相鄰數據頁。通過調整BufferPool大小和使用多個實例,可以優化數據庫性能。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL值得學習,因為它是強大的開源數據庫管理系統,適用於數據存儲、管理和分析。 1)MySQL是關係型數據庫,使用SQL操作數據,適合結構化數據管理。 2)SQL語言是與MySQL交互的關鍵,支持CRUD操作。 3)MySQL的工作原理包括客戶端/服務器架構、存儲引擎和查詢優化器。 4)基本用法包括創建數據庫和表,高級用法涉及使用JOIN連接表。 5)常見錯誤包括語法錯誤和權限問題,調試技巧包括檢查語法和使用EXPLAIN命令。 6)性能優化涉及使用索引、優化SQL語句和定期維護數據庫。

MySQL適合初學者學習數據庫技能。 1.安裝MySQL服務器和客戶端工具。 2.理解基本SQL查詢,如SELECT。 3.掌握數據操作:創建表、插入、更新、刪除數據。 4.學習高級技巧:子查詢和窗口函數。 5.調試和優化:檢查語法、使用索引、避免SELECT*,並使用LIMIT。

MySQL通過表結構和SQL查詢高效管理結構化數據,並通過外鍵實現表間關係。 1.創建表時定義數據格式和類型。 2.使用外鍵建立表間關係。 3.通過索引和查詢優化提高性能。 4.定期備份和監控數據庫確保數據安全和性能優化。

MySQL是一個開源的關係型數據庫管理系統,廣泛應用於Web開發。它的關鍵特性包括:1.支持多種存儲引擎,如InnoDB和MyISAM,適用於不同場景;2.提供主從復制功能,利於負載均衡和數據備份;3.通過查詢優化和索引使用提高查詢效率。

SQL用於與MySQL數據庫交互,實現數據的增、刪、改、查及數據庫設計。 1)SQL通過SELECT、INSERT、UPDATE、DELETE語句進行數據操作;2)使用CREATE、ALTER、DROP語句進行數據庫設計和管理;3)複雜查詢和數據分析通過SQL實現,提升業務決策效率。

MySQL的基本操作包括創建數據庫、表格,及使用SQL進行數據的CRUD操作。 1.創建數據庫:CREATEDATABASEmy_first_db;2.創建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入數據:INSERTINTObooks(title,author,published_year)VA


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3漢化版
中文版,非常好用

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具