前言 sphinx 在创建索引前需要做下面几件事:有数据源(pSource),有分词器(pTokenizer),有停止词Stopword 和 字典(pDict),索引引擎。 我们假设 数据源是 mysql, 分词器是 utf8 分词器。 索引前背景介绍 第一步是准备数据源。 这里采用 mysql 数据源。 mysq
前言
sphinx 在创建索引前需要做下面几件事:有数据源(pSource),有分词器(pTokenizer),有停止词Stopword 和 字典(pDict),索引引擎。
我们假设 数据源是 mysql, 分词器是 utf8 分词器。
索引前背景介绍
第一步是准备数据源。
这里采用 mysql 数据源。
mysql 数据的特点是一行一个记录。
每个记录有相同的字段。
每个字段可能代表数字,字符串,时间,二进制等信息,我们都可以按字符串处理即可。
<code>//数据源 CSphSource_MySQL * pSrcMySQL = new CSphSource_MySQL (); CSphSource * pSource = pSrcMySQL; </code>
第二步准备分词器和字典。
这里不多说分词器,以后会专门写一篇记录来讲解分词器。
分词器依靠字典,可以把一个字符串分割为一些词语(word)。
然后根据这些词语,我们可以把mysql的每条记录每个字段都分割为若干词语,这里成为分词。
分割后这个分词需要保留几个信息:什么分词,属于哪个记录,属于哪个字段,在字段中的位置。
分词我们会hash (crc32) 成一个数字,冲突了就当做一个词了。
记录标示就是用自增整数ID.
字段一般不会很多,我们假设最多255个,使用8位可以表示。
字段的位置不确定,但是一个字段的内容也不会很多,我们用24位表示足够了。
所以哪个字段和字段的哪个位置就可以用一个32位整数代替了。
这样一个分词就可以用三个整数
<code>//分词器 pTokenizer = sphCreateUTF8Tokenizer (); pSource->SetTokenizer ( pTokenizer ); //字典 CSphDict_CRC32 * pDict = new CSphDict_CRC32 ( iMorph ); pSource->SetDict ( pDict ); </code>
一个分词称为一个hit, 数据结构如下
<code>struct CSphWordHit { DWORD m_iDocID; //文档ID, 唯一代表一个记录 DWORD m_iWordID; //单词ID, 对单词的hash值,可以理解为唯一标示 DWORD m_iWordPos; //储存两个信息:字段位置(高8位)和分词的位置(低24位) }; </code>
我们一条记录一条记录的把所有的记录都分词了,就得到一个分词列表了。
由于这个列表很大,我们需要分成多块储存,这里假设最多16块吧。
对于每块,储存前先排序一下,这样我们就得到 16 个 有序的数组了。
然后我们就可以创建索引了。
<code>//索引 CSphIndex * pIndex = sphCreateIndexPhrase ( sIndexPath ); //开始创建索引 pIndex->Build ( pDict, pSource, iMemLimit ) </code>
其中 一切准备完毕后进入 Build 函数。
build 函数创建搜索
进入 build 函数后先准备内容。
在执行 build 函数时 ,先逐条读取记录,然后对每条记录的每个字段会进行分词(Next函数),存在 hit 数据结构中。
而且会把 hit 数据按指定块大小排序后压缩储存在 *.spr 文件中。
块信息储存在 bins 数组中,块数最多16块, 块数用 iRawBlocks 表示。
接下来就是关键的创建压缩索引了。
首先创建索引对象。
<code>cidxCreate() //打开索引文件,先写入 m_tHeader 信息 和 cidxPagesDir 信息。 fdIndex = new CSphWriter_VLN ( ".spi" ); fdIndex->PutRawBytes ( &m_tHeader, sizeof(m_tHeader) ); //cidxPagesDir 数组全是 -1 fdIndex->PutBytes ( cidxPagesDir, sizeof(cidxPagesDir) ); //打开压缩数据文件,先写入一个开始符 bDummy fdData = new CSphWriter_VLN ( ".spd" ); BYTE bDummy = 1; fdData->PutBytes ( &bDummy, 1 ); </code>
外部排序
现在我们的背景是有16个已经排序的数据存在磁盘上。
由于数据量很大,我们不能一次性全部读进来。
我们的目标是依次挑出最小的hit,然后交给索引引擎处理。
sphinx 使用了 CSphHitQueue 这个数据结构。
CSphHitQueue 你猜是什么? 队列? 恭喜你,猜错了。
CSphHitQueue 是一个最小堆。
且 堆的最大个数是 iRawBlocks。
由于 iRawBlocks 个 hits 数组已经排序,所以我们只需要得到 已排序的hits数组的第一个元素,就可以用堆得到最小的那个元素了。
然后我们把最小的这个元素建索引压缩储存,删除最小元素,并取出最小元素所在 hits数组中下一个元素,扔到堆中。
这样就可以从小到大取出所有的元素,并逐个建立索引压缩储存了。
这段话看不懂的话,可以看下面的图。
创建索引压缩储存
其中创建索引压缩储存主要依靠这个函数
<code>cidxHit ( tQueue.m_pData ); </code>
其中 tQueue.m_pData 的数据结构如下
<code>/// fat hit, which is actually stored in VLN index struct CSphFatHit{ DWORD m_iDocID; ///</code>
hit 是先按 m_iWordID 排序, 相等了再按 m_iDocID 排序, 最后才按 m_iWordPos 排序的。
现在我们先不考虑上面的堆,我们假设所有的 hit 已经在一个数组中了,且按上面的规则排序了。
现在我们想做的是对这个 hit 数组创建索引,并压缩储存。
我们现在来看看这个久等的代码吧。
<code>void CSphIndex_VLN::cidxHit ( CSphFatHit * hit ){ // next word if ( m_tLastHit.m_iWordID!=hit->m_iWordID ){ // close prev hitlist, if any if ( m_tLastHit.m_iWordPos ){ fdData->ZipInt ( 0 ); m_tLastHit.m_iWordPos = 0; } // flush prev doclist, if any if ( m_dDoclist.GetLength() ){ // finish writing wordlist entry fdIndex->ZipOffset ( fdData->m_iPos - m_iLastDoclistPos ); fdIndex->ZipInt ( m_iLastWordDocs ); fdIndex->ZipInt ( m_iLastWordHits ); m_iLastDoclistPos = fdData->m_iPos; m_iLastWordDocs = 0; m_iLastWordHits = 0; // write doclist fdData->ZipOffsets ( &m_dDoclist ); fdData->ZipInt ( 0 ); m_dDoclist.Reset (); // restart doclist deltas m_tLastHit.m_iDocID = 0; m_iLastHitlistPos = 0; } if ( !hit->m_iWordPos ){ fdIndex->ZipInt ( 0 ); return; } DWORD iPageID = hit->m_iWordID >> SPH_CLOG_BITS_PAGE; if ( m_iLastPageID!=iPageID ){ // close wordlist fdIndex->ZipInt ( 0 ); m_tLastHit.m_iWordID = 0; m_iLastDoclistPos = 0; // next map page m_iLastPageID = iPageID; cidxPagesDir [ iPageID ] = fdIndex->m_iPos; } fdIndex->ZipInt ( hit->m_iWordID - m_tLastHit.m_iWordID ); m_tLastHit.m_iWordID = hit->m_iWordID; } // next doc if ( m_tLastHit.m_iDocID!=hit->m_iDocID ){ if ( m_tLastHit.m_iWordPos ){ fdData->ZipInt ( 0 ); m_tLastHit.m_iWordPos = 0; } m_dDoclist.Add ( hit->m_iDocID - m_tLastHit.m_iDocID ); m_dDoclist.Add ( hit->m_iGroupID ); // R&D: maybe some delta-coding would help here too m_dDoclist.Add ( hit->m_iTimestamp ); m_dDoclist.Add ( fdData->m_iPos - m_iLastHitlistPos ); m_tLastHit.m_iDocID = hit->m_iDocID; m_iLastHitlistPos = fdData->m_iPos; // update per-word stats m_iLastWordDocs++; } // the hit // add hit delta fdData->ZipInt ( hit->m_iWordPos - m_tLastHit.m_iWordPos ); m_tLastHit.m_iWordPos = hit->m_iWordPos; m_iLastWordHits++; } </code>
上面的代码主要做了这个几件事。
第一,根据 m_iWordID 将分词分为 2014 块。
并使用 cidxPagesDir 记录块的偏移量(还记得索引文件第二个写入的数据吗)。
第二,对于每一块,我们按分词分组,并在索引文件 spi 中储存每个词组的信息。
具体储存的信息如下
- 和上一个分词(wordID)的偏差
- 这个分词组在 spd 文件内的长度
- 这个分词记录的变化次数
- 这个分词的 hit 数量
第三,对于每个hit,我们存两部分信息。
- 位置(pos)偏移量信息
- 文档(docId)偏移量的信息
上面的三部分信息都储存后,我们就可以快速的解析出来。
模拟索引数据与还原数据
比如对于下面的数据
wordId | docId | pos |
---|---|---|
1 | 1 | 2 |
1 | 1 | 3 |
1 | 2 | 3 |
1 | 3 | 4 |
2 | 1 | 1 |
在 spd 文件中,我们可以得到下面的序列
<code>2 1 0 3 0 4 0 1 1 1 0 1 1 1 3 1 1 1 2 0 1 </code>
其中 2 1 0 3 0 4 0
我们很容易看出来。
当 wordId 和 docId 不变时,每条 hit 会储存一个 pos 的偏差。
当 wordId 不变, docId 改变时,我们会先储存一个0, 然后偏差重新开始计算。
当 wordId 改变时, 把存在 m_dDoclist 中的关于 docId 变化的信息储存起来。
一个变化储存四条元信息:docId 变化偏差, m_iGroupID,m_iTimestamp, spi 文件内的偏差。
在 spi 文件中,我们可以得到下面的序列
<code>1 7 3 4 1 </code>
这里的代码实际上也分为两部分。
第一部分是 wordId 的偏差。 然后三个元信息是这个 wordId 的信息, 上面已经提过了,这里就不说了
依次扫面这个 2 1 0 3 0 4 0
, 我们可以恢复 pos 字段 2 3 3 4
.
而且 2 3
的 wordId 和 docID 相同。
wordId | docId | pos |
---|---|---|
2 | ||
3 | ||
3 | ||
4 |
根据 索引信息 1 7 3 4
得到这样的信息: wordId 偏移1,长度偏移数7 ,记录变化数3, hit数4.
于是先决定前四个 wordId。
wordId | docId | pos |
---|---|---|
1 | 2 | |
1 | 3 | |
1 | 3 | |
1 | 4 |
长度偏移数7 信息可以知道接下来的数据就是数据的第二部分了。
又由于之前遇到 3 个0, 所以有三组数据:, ,
根据 我们可以知道前两个 docId 了。
wordId | docId | pos |
---|---|---|
1 | 1 | 2 |
1 | 1 | 3 |
1 | 3 | |
1 | 4 |
然后根据 可以知道第三个 docId。 偏移为1, 加上上个 docId 的值,就是 docId = 2 了。
wordId | docId | pos |
---|---|---|
1 | 1 | 2 |
1 | 1 | 3 |
1 | 2 | 3 |
1 | 4 |
最后就是 决定第四个 docId 是 3 了。
wordId | docId | pos |
---|---|---|
1 | 1 | 2 |
1 | 1 | 3 |
1 | 2 | 3 |
1 | 3 | 4 |
看到这里,大家发现最后一个信息没有储存或者储存不完整,也不能解析出来。
所以在最后 sphinx 会调用 一个 下面的代码
<code>//加入结束符 CSphFatHit tFlush; tFlush.m_iDocID = 0; tFlush.m_iGroupID = 0; tFlush.m_iWordID = 0; tFlush.m_iWordPos =0; cidxHit ( &tFlush ); //填充 m_tHeader 和 cidxPagesDir 信息。 cidxDone (); </code>
然后我们实际的输出时这个样子:
<code>data: 2 1 0 3 0 4 0 1 1 1 0 1 1 1 3 1 1 1 2 0 1 0 1 1 1 20 0 index: 1 7 3 4 1 15 1 1 0 </code>
接着上面的输出就是 索引是 0 1 0 1 1 1 20
, 数据时 1 15 1 1
.
0 是 分词的间隔,所以从第二个开始。
决定 了 pos 值为 1.
决定了 wordId 值为 1 + 1 = 2.
决定了 docId 值为 1.
wordId | docId | pos |
---|---|---|
1 | 1 | 2 |
1 | 1 | 3 |
1 | 2 | 3 |
1 | 3 | 4 |
2 | 1 | 1 |
最后还有一个0.
决定了解析索引结束。
wordId | docId | pos |
---|---|---|
1 | 1 | 2 |
1 | 1 | 3 |
1 | 2 | 3 |
1 | 3 | 4 |
2 | 1 | 1 |
0 | 0 | 0 |
测试代码可以参考这里 .
推理 - 搜索信息
假设我们又上面的压缩的信息了。
我们要搜索一个词时,会如何工作呢?
假设我们已经得到这个词的 wordId 了,只需要二分一下,就可以再 O(log(1024)) 的时间内得到 wordId 在那个块内。
找到一个块内,出现一个问题,我们不能再次二分查找来找到对应的分词列表。 因为这个 index 储存的是和上一个分词的相对偏移量,那只好全部读入内存,扫描一遍对偏移量求和,然后才能找到对应的词。
这个过程中我们进行了两次 IO 操作。
第一次读取块列表信息 cidxPagesDir。
第二次读取选中的那一块的所有数据。
虽然储存偏移量节省了一些磁盘储存,但是却是用扫描整块数据为代价的。我们本来可以直接二分整块数据的。
不管怎样,我们在索引中找到了需要查找的那个分词的位置。
然后我们可以在数据文件内读取对应的信息,然后得到对应记录的id了。
当然,上面这个只是我的推理,下面我们来看看 sphinx 是怎么搜索的吧。
sphinx 搜索方法
看 sphinx 的搜索方法,只需要看 CSphIndex_VLN 的 QueryEx 函数即可。
首先对查询的语句进行分词,然后读取索引头 m_tHeader, 读取分块信息 cidxPagesDir。
然后就对分词进行搜索了。
为了防止相同的分词重复查找,这里采用二层循环,先来判断这个分词之前是否搜索过,搜索过就记下搜索过的那个词的位置。
没搜索过,就搜索。
核心代码
<code>// lookup this wordlist page // offset might be -1 if page is totally empty SphOffset_t iWordlistOffset = cidxPagesDir [ qwords[i].m_iWordID >> SPH_CLOG_BITS_PAGE ]; if ( iWordlistOffset>0 ){ // set doclist files qwords[i].m_rdDoclist.SetFile ( tDoclist.m_iFD ); qwords[i].m_rdHitlist.SetFile ( tDoclist.m_iFD ); // read wordlist rdIndex.SeekTo ( iWordlistOffset ); // restart delta decoding wordID = 0; SphOffset_t iDoclistOffset = 0; for ( ;; ){ // unpack next word ID DWORD iDeltaWord = rdIndex.UnzipInt(); if ( !iDeltaWord ) break;// wordlist chunk is over wordID += iDeltaWord; // unpack next offset SphOffset_t iDeltaOffset = rdIndex.UnzipOffset (); iDoclistOffset += iDeltaOffset; assert ( iDeltaOffset ); // unpack doc/hit count int iDocs = rdIndex.UnzipInt (); int iHits = rdIndex.UnzipInt (); assert ( iDocs ); assert ( iHits ); // break on match or list end if ( wordID>=qwords[i].m_iWordID ){ if ( wordID==qwords[i].m_iWordID ){ qwords[i].m_rdDoclist.SeekTo ( iDoclistOffset ); qwords[i].m_iDocs = iDocs; qwords[i].m_iHits = iHits; } break; } } } </code>
看了这个代码,和我想的有点出入,但是总体思路还是一样的。
它是把所有的 cidxPagesDir 全储存起来了,这样直接定位到指定的位置了。少了一个二分搜索。
定位到某个块之后, 果然采用暴力循环来一个一个的增加偏移,然后查找对应的分词。
找到了记录对应的位置的四大元信息。
再然后由于数据量已经很小了,就把匹配的数据取出来即可。
当然,取数据的时候会进行布尔操作,而且会加上权值计算,这样就搜索满足条件的前若干条了。
原文地址:sphinx 源码阅读之 分词,压缩索引,倒排, 感谢原作者分享。

InnoDBBufferPool通過緩存數據和索引頁來減少磁盤I/O,提升數據庫性能。其工作原理包括:1.數據讀取:從BufferPool中讀取數據;2.數據寫入:修改數據後寫入BufferPool並定期刷新到磁盤;3.緩存管理:使用LRU算法管理緩存頁;4.預讀機制:提前加載相鄰數據頁。通過調整BufferPool大小和使用多個實例,可以優化數據庫性能。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL值得學習,因為它是強大的開源數據庫管理系統,適用於數據存儲、管理和分析。 1)MySQL是關係型數據庫,使用SQL操作數據,適合結構化數據管理。 2)SQL語言是與MySQL交互的關鍵,支持CRUD操作。 3)MySQL的工作原理包括客戶端/服務器架構、存儲引擎和查詢優化器。 4)基本用法包括創建數據庫和表,高級用法涉及使用JOIN連接表。 5)常見錯誤包括語法錯誤和權限問題,調試技巧包括檢查語法和使用EXPLAIN命令。 6)性能優化涉及使用索引、優化SQL語句和定期維護數據庫。

MySQL適合初學者學習數據庫技能。 1.安裝MySQL服務器和客戶端工具。 2.理解基本SQL查詢,如SELECT。 3.掌握數據操作:創建表、插入、更新、刪除數據。 4.學習高級技巧:子查詢和窗口函數。 5.調試和優化:檢查語法、使用索引、避免SELECT*,並使用LIMIT。

MySQL通過表結構和SQL查詢高效管理結構化數據,並通過外鍵實現表間關係。 1.創建表時定義數據格式和類型。 2.使用外鍵建立表間關係。 3.通過索引和查詢優化提高性能。 4.定期備份和監控數據庫確保數據安全和性能優化。

MySQL是一個開源的關係型數據庫管理系統,廣泛應用於Web開發。它的關鍵特性包括:1.支持多種存儲引擎,如InnoDB和MyISAM,適用於不同場景;2.提供主從復制功能,利於負載均衡和數據備份;3.通過查詢優化和索引使用提高查詢效率。

SQL用於與MySQL數據庫交互,實現數據的增、刪、改、查及數據庫設計。 1)SQL通過SELECT、INSERT、UPDATE、DELETE語句進行數據操作;2)使用CREATE、ALTER、DROP語句進行數據庫設計和管理;3)複雜查詢和數據分析通過SQL實現,提升業務決策效率。

MySQL的基本操作包括創建數據庫、表格,及使用SQL進行數據的CRUD操作。 1.創建數據庫:CREATEDATABASEmy_first_db;2.創建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入數據:INSERTINTObooks(title,author,published_year)VA


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SublimeText3漢化版
中文版,非常好用

Dreamweaver Mac版
視覺化網頁開發工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器