前段时间老师给我的任务是让我使用MapReduces和Spark分别实现K-means算法来比较MapReduces和Spark。首先问题是K-means算法是什么? K-means算法的中心思想其实就是迭代,通过不断的迭代,使聚类效果达到局部最优,为什么我们说局部最优呢?因为K-means算法的
前段时间老师给我的任务是让我使用MapReduces和Spark分别实现K-means算法来比较MapReduces和Spark。首先问题是K-means算法是什么?
K-means算法的中心思想其实就是迭代,通过不断的迭代,使聚类效果达到局部最优,为什么我们说局部最优呢?因为K-means算法的效果的优劣性和最初选取的中心点是有莫大关系的,我们只能在初始中心点的基础上达到局部最优解。K-means算法是基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。我感觉总的来说就是物以类聚。
对于聚类问题,我们事先并不知道给定的一个训练数集到底有哪些类别(即没有指定类标签),而是根据需要设置指定个数类标签的数量(但不知道具体的类标签是什么),然后通过K-means算法将具有相同特征,或者基于一定规则认为某一些对象相似,与其它一些组明显的不同的数据聚集到一起,自然形成分组。之后,我们可以根据每一组的数据的特点,给定一个合适的类标签(当然,可能给出类标签对实际应用没有实际意思,例如可能我们就想看一下聚类得到的各个数据集的相似性)。
在这里我们首先说明一个概念:质心(Centroid)。质心可以认为就是一个样本点,或者可以认为是数据集中的一个数据点P,它是具有相似性的一组数据的中心,即该组中每个数据点到P的距离都比到其它质心的距离近(与其它质心相似性比较低)。
K个初始类聚类质心的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的质心,初始地代表一个聚类结果,当然这个结果一般情况不是合理的,只是随便地将数据集进行了一次随机的划分,具体进行修正这个质心还需要进行多轮的计算,来进一步步逼近我们期望的聚类结果:具有相似性的对象聚集到一个组中,它们都具有共同的一个质心。另外,因为初始质心选择的随机性,可能未必使最终的结果达到我们的期望,所以我们可以多次迭代,每次迭代都重新随机得到初始质心,直到最终的聚类结果能够满足我们的期望为止。
1. 首先输入k的值,即我们希望将数据集D = {P1, P2, …, Pn}经过聚类得到k个分类(分组)。
2. 从数据集D中随机选择k个数据点作为质心,质心集合定义为:Centroid = {Cp1, Cp2, …, Cpk},排除质心以后数据集O={O1, O2, …, Om}。
- 对集合O中每一个数据点Oi,计算Oi与Cpj(j=1, 2, …,k)的距离,得到一组距离Si={si1, si2, …, sik},计算Si中距离最小值,则该该数据点Oi就属于该最小距离值对应的质心。
- 每个数据点Oi都已经属于其中一个质心,然后根据每个质心所包含的数据点的集合,重新计算得到一个新的质心。
5. 如果新计算的质心和原来的质心之间的距离达到某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),可以认为我们进行的聚类已经达到期望的结果,算法终止。
6. 如果新质心和原来之心距离变化很大,需要迭代2~5步骤。
这是之前整理的一份,刚刚翻出来,现在贴出来,以便之后查看。
原文地址:形象理解K-Means算法, 感谢原作者分享。

Python中的k-means聚类模型详解聚类分析是一种用于发现数据中相似对象的方法。在数据挖掘、机器学习等领域,聚类分析被广泛应用。k-means聚类是其中一种较为常见的聚类方法。它能够将数据集中的样本划分成k个簇,且每个簇的内部差异最小,而簇间差异最大。本文将详细介绍Python中的k-means聚类模型。k-means聚类的原理k-means聚类算法是

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

raptor允许使用连接基本流程图符号来创建算法,然后可以在其环境下直接调试和运行算法,包括单步执行或连续执行的模式。Raptor程序实际上是一个流程图,运行时一次执行一个图形符号,以便帮助用户跟踪Raptor程序的指令流执行过程。

深入理解Linux管道的使用方法在Linux操作系统中,管道是一种非常有用的功能,能够将一个命令的输出作为另一个命令的输入,从而方便地实现各种复杂的数据处理和操作。深入理解Linux管道的使用方法对于系统管理员和开发人员来说非常重要。本文将介绍管道的基本概念,并通过具体的代码示例来展示如何使用Linux管道进行数据处理和操作。1.管道的基本概念在Linux

一、Raft 概述Raft 算法是分布式系统开发首选的共识算法。比如现在流行 Etcd、Consul。如果掌握了这个算法,就可以较容易地处理绝大部分场景的容错和一致性需求。比如分布式配置系统、分布式 NoSQL 存储等等,轻松突破系统的单机限制。Raft 算法是通过一切以领导者为准的方式,实现一系列值的共识和各节点日志的一致。二、Raft 角色2.1 角色跟随者(Follower):普通群众,默默接收和来自领导者的消息,当领导者心跳信息超时的

如何正确理解PHP中的值传递方式PHP是一种广泛应用于Web开发的脚本语言,而在PHP中的参数传递方式主要有值传递和引用传递两种。而理解PHP中的值传递方式对于编写高效的代码至关重要。本文将详细讨论PHP中的值传递方式,并通过具体的代码示例来帮助读者更好地理解。值传递方式的基本概念值传递是指将变量的值复制一份传递给函数或方法,在函数内部对该值的操作不会影响到

在Go编程中,注释是一个非常重要的部分。注释可以帮助程序员更好地理解代码的逻辑、目的和细节,从而提高代码的可读性和可维护性。本文将介绍Go语言中注释的重要性,并结合具体的代码示例来说明注释对代码理解的帮助。首先,让我们来看一个简单的Go程序示例:packagemainimport"fmt"funcmain(){/


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3漢化版
中文版,非常好用

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

禪工作室 13.0.1
強大的PHP整合開發環境

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

WebStorm Mac版
好用的JavaScript開發工具