首頁  >  文章  >  資料庫  >  Hadoop的Secondary Sorting

Hadoop的Secondary Sorting

WBOY
WBOY原創
2016-06-07 16:35:481127瀏覽

这几天项目中使用Hadoop遇到一个问题,对于这样key-value的数据集合:id-biz object,对id进行partition(比如根据某特定的hash算法P),分为a份;使用数量为b的reducer,在reducer里面要使用第三方组件进行批量上传;上传成文件,文件数量为c,但是有两个要

Hadoop的Secondary Sorting 这几天项目中使用Hadoop遇到一个问题,对于这样key-value的数据集合:id-biz object,对id进行partition(比如根据某特定的hash算法P),分为a份;使用数量为b的reducer,在reducer里面要使用第三方组件进行批量上传;上传成文件,文件数量为c,但是有两个要求:

  • 上述a、b、c都相等,从而使得每个partition的数据最终都通过同一个reducer上传到同一个文件中去;
  • 每个reducer中上传的数据要求id必须有序。

最开始,想到的办法是,为了保证reducer中的批量上传,需要使得传入reducer的key变成一个经过hash算法A计算得到的index,这样就使得reducer中的value是一个包含了数个biz boject的集合的iterator,从而实现在一次reducer调用中批量上传并且提交。在批量上传提交的过程中,按照每上限个(例如1000个)文件提交一次的办法进行,以保证内存占用控制在一定范围内。

如何保证有序?

Hadoop在Reduce之前会自动对key排序,但是上述的情况实际是要根据id来给value排序(因为在map之后key已经变成index了),凡是涉及到要给value排序的,都要使用Hadoop的Secondary Sorting(见stackoverflow链接)。

Hadoop的Secondary Sorting

这张图其实已经可以说明,把value要排序的关键属性放到key里面去,这样key就变成了natural key(上述的index)和secondary key(上述的id)这样两部分组成的一个composite key。

1. Partition:Partition的时候仅使用natural key,保证所有index的数据都分在同一个partition;

JobConf.setPartitionClass(...);

2. Sort:真正给key排序的比较算法要对natural key和secondary key两部分进行排序,从而保证了key在id维度上是有序的,而id和value是一一对应的,因此value也就是有序的。

JobConf.setOutputKeyComparatorClass(...);

3. Group:grouping的比较算法忽略掉secondary key,只对natural keygrouping,使得属于同一index的数据都走到同一个reducer中去。

JobConf.setOutputValueGroupingComparatorClass(...);

总结一下,这样一来,在reducer中,input key是上述这样一个composite key对象,包含了index和id,input value是一个可以遍历的元素为原始biz object类型的对象。

后话:这是Secondary Sorting的过程,可以解决我的问题,但是后来发现,实际上,我的问题并不需要要用这样啰嗦的方式来解决:

  • 进入reducer的key只需要是id,Hadoop会对key自动排序;
  • partition策略不变,但是是在partitioner中计算index并根据它来partition;
  • 不需要单独指定Grouping和Sorting的算法;
  • 在reducer中建立一个大小为上限(如1000个)的容器对象p。

这样,既然对于每个partition的数据,都在同一个reducer中得到处理,而reducer中每次reduce方法彼此之间是根据id有序进行,那么就可以在每次调用时把数据放到p中,在p放满时提交一次即可。

测试通过。回头看看,真是刚开始的时候把问题想复杂了。

文章未经特殊标明皆为本人原创,未经许可不得用于任何商业用途,转载请保持完整性并注明来源链接《四火的唠叨》

你可能也喜欢:

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn