搜尋

Libbson is a new shared library written in C for developers wanting to work with the BSON serialization format. Its API will feel natural to C programmers but can also be used as the base of a C extension in higher-level MongoDB drivers. T

Libbson is a new shared library written in C for developers wanting to work with the BSON serialization format.

Its API will feel natural to C programmers but can also be used as the base of a C extension in higher-level MongoDB drivers.

The library contains everything you would expect from a BSON implementation. It has the ability to work with documents in their serialized form, iterating elements within a document, overwriting fields in place, Object Id generation, JSON conversion, data validation, and more. Some lessons were learned along the way that are beneficial for those choosing to implement BSON themselves.

Improving small document performance

A common use case of BSON is for relatively small documents. This has a profound impact on the memory allocator in userspace, causing what is commonly known as “memory fragmentation”. Memory fragmentation can make it more difficult for your allocator to locate a contiguous region of memory.

In addition to increasing allocation latency, it increases the memory requirements of your application to overcome that fragmentation.

To help with this issue, the bson_t structure contains 120 bytes of inline space that allows BSON documents to be built directly on the stack as opposed to the heap.

When the document size grows past 120 bytes it will automatically migrate to a heap allocation.

Additionally, bson_t will grow it’s buffers in powers of two. This is standard when working with buffers and arrays as it amortizes the overhead of growing the buffer versus calling realloc() every time data is appended. 120 bytes was chosen to align bson_t to the size of two sequential cachelines on x86_64 (each 64 bytes).

This may change based on future research, but not before a stable ABI has been reached.

Single allocation for nested documents

One strength of BSON is it’s ability to nest objects and arrays. Often times when serializing these nested documents, each sub-document is serialized independently and then appended to the parents buffer.

As you might imagine, this takes quite the toll on the allocator. It can generate many small allocations which were only created to have been immediately discarded after appending to the parents buffer. Libbson allows for building sub-documents directly into the parent documents buffer.

Doing so helps avoid this costly fragmentation. The topmost document will grow its underlying buffers in powers of two each time the allocation would overflow.

Parsing BSON documents from network buffers

Another common area for allocator fragmentation is during BSON document parsing. Libbson allows parsing and iteration of BSON documents directly from your incoming network buffer.

This means the only allocations created are those needed for your higher level language such as a PyDict if writing a Python extension.

Developers writing C extensions for their driver may choose to implement a “generator” style parsing of documents to help keep memory fragmentation low.

A technique we’re yet to explore is implementing a hashtable-esque structure backed by BSON, only deserializing the entire buffer after a threshold of keys have been accessed.

Generating BSON documents into network buffers

Much like parsing BSON documents, generating documents and placing them into your network buffers can be hard on your memory allocator. To help keep this fragmentation down, Libbson provides support for serializing your document to BSON directly within a buffer of your choosing.

This is ideal for situations such as writing a sequence of BSON documents into a MongoDB message.

Generating Object Ids without Synchronization

Applications are often doing ObjectId generation, especially in high insert environments. The uniqueness of generated ObjectIds is critical to avoiding duplicate key errors across multiple nodes.

Highly threaded environments create a local contention point slowing the rate of generation. This is because the threads must synchronize on the increment counter of each sequential ObjectId. Failure to do so could cause collisions that would not be detected until after a network round-trip. Most drivers implement the synchronization with an atomic increment or a mutex if atomics are not available.

Libbson will use atomic increments and in some cases avoid synchronization altogether if possible. One such case is a non-threaded environment.

Another is when running on Linux as both threads and processes are in the same namespace.

This allows the use of the thread identifier as the pid within the ObjectId.

You can find Libbson at https://github.com/mongodb/libbson and discuss design choices with its author, Christian Hergert, who can be found on twitter as @hergertme.

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
您什麼時候應該使用複合索引與多個單列索引?您什麼時候應該使用複合索引與多個單列索引?Apr 11, 2025 am 12:06 AM

在數據庫優化中,應根據查詢需求選擇索引策略:1.當查詢涉及多個列且條件順序固定時,使用複合索引;2.當查詢涉及多個列但條件順序不固定時,使用多個單列索引。複合索引適用於優化多列查詢,單列索引則適合單列查詢。

如何識別和優化MySQL中的慢速查詢? (慢查詢日誌,performance_schema)如何識別和優化MySQL中的慢速查詢? (慢查詢日誌,performance_schema)Apr 10, 2025 am 09:36 AM

要優化MySQL慢查詢,需使用slowquerylog和performance_schema:1.啟用slowquerylog並設置閾值,記錄慢查詢;2.利用performance_schema分析查詢執行細節,找出性能瓶頸並優化。

MySQL和SQL:開發人員的基本技能MySQL和SQL:開發人員的基本技能Apr 10, 2025 am 09:30 AM

MySQL和SQL是開發者必備技能。 1.MySQL是開源的關係型數據庫管理系統,SQL是用於管理和操作數據庫的標準語言。 2.MySQL通過高效的數據存儲和檢索功能支持多種存儲引擎,SQL通過簡單語句完成複雜數據操作。 3.使用示例包括基本查詢和高級查詢,如按條件過濾和排序。 4.常見錯誤包括語法錯誤和性能問題,可通過檢查SQL語句和使用EXPLAIN命令優化。 5.性能優化技巧包括使用索引、避免全表掃描、優化JOIN操作和提升代碼可讀性。

描述MySQL異步主奴隸複製過程。描述MySQL異步主奴隸複製過程。Apr 10, 2025 am 09:30 AM

MySQL異步主從復制通過binlog實現數據同步,提升讀性能和高可用性。 1)主服務器記錄變更到binlog;2)從服務器通過I/O線程讀取binlog;3)從服務器的SQL線程應用binlog同步數據。

mysql:簡單的概念,用於輕鬆學習mysql:簡單的概念,用於輕鬆學習Apr 10, 2025 am 09:29 AM

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

MySQL:數據庫的用戶友好介紹MySQL:數據庫的用戶友好介紹Apr 10, 2025 am 09:27 AM

MySQL的安裝和基本操作包括:1.下載並安裝MySQL,設置根用戶密碼;2.使用SQL命令創建數據庫和表,如CREATEDATABASE和CREATETABLE;3.執行CRUD操作,使用INSERT,SELECT,UPDATE,DELETE命令;4.創建索引和存儲過程以優化性能和實現複雜邏輯。通過這些步驟,你可以從零開始構建和管理MySQL數據庫。

InnoDB緩衝池如何工作,為什麼對性能至關重要?InnoDB緩衝池如何工作,為什麼對性能至關重要?Apr 09, 2025 am 12:12 AM

InnoDBBufferPool通過將數據和索引頁加載到內存中來提升MySQL數據庫的性能。 1)數據頁加載到BufferPool中,減少磁盤I/O。 2)臟頁被標記並定期刷新到磁盤。 3)LRU算法管理數據頁淘汰。 4)預讀機制提前加載可能需要的數據頁。

MySQL:初學者的數據管理易用性MySQL:初學者的數據管理易用性Apr 09, 2025 am 12:07 AM

MySQL適合初學者使用,因為它安裝簡單、功能強大且易於管理數據。 1.安裝和配置簡單,適用於多種操作系統。 2.支持基本操作如創建數據庫和表、插入、查詢、更新和刪除數據。 3.提供高級功能如JOIN操作和子查詢。 4.可以通過索引、查詢優化和分錶分區來提升性能。 5.支持備份、恢復和安全措施,確保數據的安全和一致性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境