搜尋
首頁資料庫mysql教程使用RawComparator加速Hadoop程序

在前面两篇文章[1][2]中我们介绍了Hadoop序列化的相关知识,包括Writable接口与Writable对象以及如何编写定制的Writable类,深入的分析了Writable类序列化之后占用的字节空间以及字节序列的构成。我们指出Hadoop序列化是Hadoop的核心部分之一,了解和分析Wri

在前面两篇文章[1][2]中我们介绍了Hadoop序列化的相关知识,包括Writable接口与Writable对象以及如何编写定制的Writable类,深入的分析了Writable类序列化之后占用的字节空间以及字节序列的构成。我们指出Hadoop序列化是Hadoop的核心部分之一,了解和分析Writable类的相关知识有助于我们理解Hadoop序列化的工作方式以及选择合适的Writable类作为MapReduce的键和值,以达到高效利用磁盘空间以及快速读写对象。因为在数据密集型计算中,在网络数据的传输是影响计算效率的一个重要因素,选择合适的Writable对象不但减小了磁盘空间,而且更重要的是其减小了需要在网络中传输的数据量,从而加快了程序的速度。

在本文中我们介绍另外一种方法加快程序的速度,这就是使用RawComparator加速Hadoop程序。我们知道作为键(Key)的Writable类必须实现WritableComparable接口,以实现对键进行排序的功能。Writable类进行比较时,Hadoop的默认方式是先将序列化后的对象字节流反序列化为对象,然后再进行比较(compareTo方法),比较过程需要一个反序列化的步骤。RawComparator的做法是不进行反序列化,而是在字节流层面进行比较,这样就省下了反序列化过程,从而加速程序的运行。Hadoop自身提供的IntWritable、LongWritabe等类已经实现了这种优化,使这些Writable类作为键进行比较时,直接使用序列化的字节数组进行比较大小,而不用进行反序列化。

RawComparator的实现

在Hadoop中编写Writable的RawComparator一般不直接继承RawComparator类,而是继承RawComparator的子类WritableComparator,因为WritableComparator类为我们提供了一些有用的工具方法,比如从字节数组中读取int、long和vlong等值。下面是上两篇文章中我们定制的MyWritable类的RawComparator实现,定制的MyWritable由两个VLongWritable对组成,为了添加RawComparator功能,Writable类必须实现WritableComparable接口,这里不再展示实现了WritableComparable接口的MyWritableComparable类的全部内容,而只是MyWritableComparable类中Comparator的实现,完整的代码可以在github中找到。

...//omitted for conciseness
/**
 * A RawComparator that compares serialized VlongWritable Pair
 * compare method decode long value from serialized byte array one by one
 *
 * @author yoyzhou
 *
 * */
public static class Comparator extends WritableComparator {
	public Comparator() {
		super(MyWritableComparable.class);
	}
	public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
		int cmp = 1;
		//determine how many bytes the first VLong takes
		int n1 = WritableUtils.decodeVIntSize(b1[s1]);
		int n2 = WritableUtils.decodeVIntSize(b2[s2]);
		try {
			//read value from VLongWritable byte array
			long l11 = readVLong(b1, s1);
			long l21 = readVLong(b2, s2);
			cmp = l11 > l21 ? 1 : (l11 == l21 ? 0 : -1);
			if (cmp != 0) {
				return cmp;
			} else {
				long l12 = readVLong(b1, s1 + n1);
				long l22 = readVLong(b2, s2 + n2);
				return cmp = l12 > l22 ? 1 : (l12 == l22 ? 0 : -1);
			}
		} catch (IOException e) {
				throw new RuntimeException(e);
		}
	}
}
static { // register this comparator
	WritableComparator.define(MyWritableComparable.class, new Comparator());
}
...

通过上面的代码我们可以看到要实现Writable的RawComparator我们只需要重载WritableComparator的public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)方法。在我们的例子中,通过从VLongWritable对序列化后字节数组中一个一个的读取VLongWritable的值,再进行比较。

当然编写完compare方法之后,不要忘了为Writable类注册编写的RawComparator类。

总结

为Writable类编写RawComparator必须对Writable本身序列化之后的字节数组有清晰的了解,知道如何从字节数组中读取Writable对象的值,而这正是我们前两篇关于Hadoop序列化和Writable接口的文章所要阐述的内容。

通过以上的三篇文章,我们了解了Hadoop Writable接口,如何编写自己的Writable类,Writable类的字节序列长度与其构成,以及如何为Writable类编写RawComparator来为Hadoop提速。

参考资料

Tom White, Hadoop: The Definitive Guide, 3rd Edition

Hadoop序列化与Writable接口(一)

Hadoop序列化与Writable接口(二)

--EOF--

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
MySQL索引基數如何影響查詢性能?MySQL索引基數如何影響查詢性能?Apr 14, 2025 am 12:18 AM

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL:新用戶的資源和教程MySQL:新用戶的資源和教程Apr 14, 2025 am 12:16 AM

MySQL學習路徑包括基礎知識、核心概念、使用示例和優化技巧。 1)了解表、行、列、SQL查詢等基礎概念。 2)學習MySQL的定義、工作原理和優勢。 3)掌握基本CRUD操作和高級用法,如索引和存儲過程。 4)熟悉常見錯誤調試和性能優化建議,如合理使用索引和優化查詢。通過這些步驟,你將全面掌握MySQL的使用和優化。

現實世界Mysql:示例和用例現實世界Mysql:示例和用例Apr 14, 2025 am 12:15 AM

MySQL在現實世界的應用包括基礎數據庫設計和復雜查詢優化。 1)基本用法:用於存儲和管理用戶數據,如插入、查詢、更新和刪除用戶信息。 2)高級用法:處理複雜業務邏輯,如電子商務平台的訂單和庫存管理。 3)性能優化:通過合理使用索引、分區表和查詢緩存來提升性能。

MySQL中的SQL命令:實踐示例MySQL中的SQL命令:實踐示例Apr 14, 2025 am 12:09 AM

MySQL中的SQL命令可以分為DDL、DML、DQL、DCL等類別,用於創建、修改、刪除數據庫和表,插入、更新、刪除數據,以及執行複雜的查詢操作。 1.基本用法包括CREATETABLE創建表、INSERTINTO插入數據和SELECT查詢數據。 2.高級用法涉及JOIN進行表聯接、子查詢和GROUPBY進行數據聚合。 3.常見錯誤如語法錯誤、數據類型不匹配和權限問題可以通過語法檢查、數據類型轉換和權限管理來調試。 4.性能優化建議包括使用索引、避免全表掃描、優化JOIN操作和使用事務來保證數據一致性

InnoDB如何處理酸合規性?InnoDB如何處理酸合規性?Apr 14, 2025 am 12:03 AM

InnoDB通過undolog實現原子性,通過鎖機制和MVCC實現一致性和隔離性,通過redolog實現持久性。 1)原子性:使用undolog記錄原始數據,確保事務可回滾。 2)一致性:通過行級鎖和MVCC確保數據一致。 3)隔離性:支持多種隔離級別,默認使用REPEATABLEREAD。 4)持久性:使用redolog記錄修改,確保數據持久保存。

MySQL的位置:數據庫和編程MySQL的位置:數據庫和編程Apr 13, 2025 am 12:18 AM

MySQL在數據庫和編程中的地位非常重要,它是一個開源的關係型數據庫管理系統,廣泛應用於各種應用場景。 1)MySQL提供高效的數據存儲、組織和檢索功能,支持Web、移動和企業級系統。 2)它使用客戶端-服務器架構,支持多種存儲引擎和索引優化。 3)基本用法包括創建表和插入數據,高級用法涉及多表JOIN和復雜查詢。 4)常見問題如SQL語法錯誤和性能問題可以通過EXPLAIN命令和慢查詢日誌調試。 5)性能優化方法包括合理使用索引、優化查詢和使用緩存,最佳實踐包括使用事務和PreparedStatemen

MySQL:從小型企業到大型企業MySQL:從小型企業到大型企業Apr 13, 2025 am 12:17 AM

MySQL適合小型和大型企業。 1)小型企業可使用MySQL進行基本數據管理,如存儲客戶信息。 2)大型企業可利用MySQL處理海量數據和復雜業務邏輯,優化查詢性能和事務處理。

幻影是什麼讀取的,InnoDB如何阻止它們(下一個鍵鎖定)?幻影是什麼讀取的,InnoDB如何阻止它們(下一個鍵鎖定)?Apr 13, 2025 am 12:16 AM

InnoDB通過Next-KeyLocking機制有效防止幻讀。 1)Next-KeyLocking結合行鎖和間隙鎖,鎖定記錄及其間隙,防止新記錄插入。 2)在實際應用中,通過優化查詢和調整隔離級別,可以減少鎖競爭,提高並發性能。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境