仔细看了一下hadoop pig 的udf 文档 在 Algebraic interface 设计上还是可以学习的。 一些聚合函数,如 SUM, COUNT 都得实现 Algebraic 接口 此接口要实现 三个方法,这三个方法都是返回具体实现的 class name 并且这些 class name都要实现 exec方法 public
仔细看了一下hadoop pig 的udf 文档 在 Algebraic interface 设计上还是可以学习的。
一些聚合函数,如 SUM, COUNT 都得实现 Algebraic 接口
此接口要实现 三个方法,这三个方法都是返回具体实现的 class name
并且这些 class name都要实现 exec方法
<code> public interface Algebraic{ public String getInitial(); public String getIntermed(); public String getFinal(); } </code>
看 pig built in COUNT 的实现
这几个方法都可以对应对相关的hadoop 的map combine,reduce
map 对应 Initial
combine 对应 Intermed
reduce 对应 reduce
发现 java 的内部静态内还是很有用的
<code>public class COUNT extends EvalFunc<long> implements Algebraic{ public Long exec(Tuple input) throws IOException {return count(input);} public String getInitial() {return Initial.class.getName();} public String getIntermed() {return Intermed.class.getName();} public String getFinal() {return Final.class.getName();} static public class Initial extends EvalFunc<tuple> { public Tuple exec(Tuple input) throws IOException {return TupleFactory.getInstance().newTuple(count(input));} } static public class Intermed extends EvalFunc<tuple> { public Tuple exec(Tuple input) throws IOException {return TupleFactory.getInstance().newTuple(sum(input));} } static public class Final extends EvalFunc<long> { public Tuple exec(Tuple input) throws IOException {return sum(input);} } static protected Long count(Tuple input) throws ExecException { Object values = input.get(0); if (values instanceof DataBag) return ((DataBag)values).size(); else if (values instanceof Map) return new Long(((Map)values).size()); } static protected Long sum(Tuple input) throws ExecException, NumberFormatException { DataBag values = (DataBag)input.get(0); long sum = 0; for (Iterator (Tuple) it = values.iterator(); it.hasNext();) { Tuple t = it.next(); sum += (Long)t.get(0); } return sum; } } </long></tuple></tuple></long></code>
原文地址:Hadoop Pig Algebraic Interface, 感谢原作者分享。

存儲過程是MySQL中的預編譯SQL語句集合,用於提高性能和簡化複雜操作。 1.提高性能:首次編譯後,後續調用無需重新編譯。 2.提高安全性:通過權限控制限制數據表訪問。 3.簡化複雜操作:將多條SQL語句組合,簡化應用層邏輯。

MySQL查詢緩存的工作原理是通過存儲SELECT查詢的結果,當相同查詢再次執行時,直接返回緩存結果。 1)查詢緩存提高數據庫讀取性能,通過哈希值查找緩存結果。 2)配置簡單,在MySQL配置文件中設置query_cache_type和query_cache_size。 3)使用SQL_NO_CACHE關鍵字可以禁用特定查詢的緩存。 4)在高頻更新環境中,查詢緩存可能導致性能瓶頸,需通過監控和調整參數優化使用。

MySQL被廣泛應用於各種項目中的原因包括:1.高性能與可擴展性,支持多種存儲引擎;2.易於使用和維護,配置簡單且工具豐富;3.豐富的生態系統,吸引大量社區和第三方工具支持;4.跨平台支持,適用於多種操作系統。

MySQL數據庫升級的步驟包括:1.備份數據庫,2.停止當前MySQL服務,3.安裝新版本MySQL,4.啟動新版本MySQL服務,5.恢復數據庫。升級過程需注意兼容性問題,並可使用高級工具如PerconaToolkit進行測試和優化。

MySQL備份策略包括邏輯備份、物理備份、增量備份、基於復制的備份和雲備份。 1.邏輯備份使用mysqldump導出數據庫結構和數據,適合小型數據庫和版本遷移。 2.物理備份通過複製數據文件,速度快且全面,但需數據庫一致性。 3.增量備份利用二進制日誌記錄變化,適用於大型數據庫。 4.基於復制的備份通過從服務器備份,減少對生產系統的影響。 5.雲備份如AmazonRDS提供自動化解決方案,但成本和控制需考慮。選擇策略時應考慮數據庫大小、停機容忍度、恢復時間和恢復點目標。

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

在MySQL中優化數據庫模式設計可通過以下步驟提升性能:1.索引優化:在常用查詢列上創建索引,平衡查詢和插入更新的開銷。 2.表結構優化:通過規範化或反規範化減少數據冗餘,提高訪問效率。 3.數據類型選擇:使用合適的數據類型,如INT替代VARCHAR,減少存儲空間。 4.分區和分錶:對於大數據量,使用分區和分錶分散數據,提升查詢和維護效率。

tooptimizemysqlperformance,lofterTheSeSteps:1)inasemproperIndexingTospeedUpqueries,2)使用ExplaintplaintoAnalyzeandoptimizequeryPerformance,3)ActiveServerConfigurationStersLikeTlikeTlikeTlikeIkeLikeIkeIkeLikeIkeLikeIkeLikeIkeLikeNodb_buffer_pool_sizizeandmax_connections,4)


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 Linux新版
SublimeText3 Linux最新版

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3漢化版
中文版,非常好用

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。