作者: Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明 网址:http://dongxicheng.org/mapreduce/hadoop-rumen-introduction/ 什么是Hadoop Rumen? Hadoop Rumen是为Hadoop MapReduce设计的日志解析和分析工具
作者:Dong | 新浪微博:西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明
网址:http://dongxicheng.org/mapreduce/hadoop-rumen-introduction/
什么是Hadoop Rumen?
Hadoop Rumen是为Hadoop MapReduce设计的日志解析和分析工具,它能够将JobHistory 日志解析成有意义的数据并格式化存储。Rumen可以单独使用,但通常作为其他组件,比如GridMix (v3) 和 Mumak的基础库。
Hadoop Rumen设计动机
对于任何一个工作在Hadoop之上的外部工具,分析JobHistory日志都是必须的工作之一。基于这点考虑,Hadoop应内嵌一个JobHistory日志分析工具。
统计分析MapReduce作业的各种属性,比如任务运行时间、任务失败率等,通常是基准测试或者模拟器必备的功能,Hadoop Rumen可以为任务生成Cumulative Distribution Functions (CDF),这可以用于推断不完整的、失败的或者丢失的任务。
Hadoop Rumen基本构成
Hadoop Rumen已经内置在Apache Hadoop 1.0之上(包括0.21.x,0.22.x,CDH3)各个版本中,位于org.apache.hadoop.tools.rumen包中,通常被Hadoop打包成独立的jar包hadoop-tools-[VERSION].jar。Hadoop Rumen由两部分组成:
(1) Trace Builder
将JobHistory日志解析成易读的格式,当前仅支持json格式。Trace Builder的输出被称为job trace(作业运行踪迹),我们通过job trace很容易模拟(还原)作业的整个运行过程。
(2) ?Folder
将job trace按时间进行压缩或者扩张。这个还是为了方便其他组件,比如GridMix (v3) 和 Mumak,使用。Folder可以将作业运行过程进行等比例缩放,以便在更短的时间内模拟作业运行过程。
试用Hadoop Rumen
你可以通过两种方式运行Rumen,一种是使用集成化(综合所有功能)的HadoopLogsAnalyzer类,在很多Hadoop版本中,这个类已经过期,不推荐使用,另一种是使用TraceBuilder和Folder类。它们的运行方式基本类似,下面以HadoopLogsAnalyzer类为例进行说明:
bin/hadoop org.apache.hadoop.tools.rumen.HadoopLogsAnalyzer -v1 -write-job-trace file:///tmp/job-trace.json -write-topology file:///tmp/topology.json file:///software/hadoop/logs/history/done/
其中,“-v1”表示采用version 1的JobHsitory格式,如果你的Hadoop版本是0.20.x系列,则需要加这个参数,“-write-job-trace”是输出的job trace存放位置,“-write-topology”是拓扑结构存放位置,Rumen能够通过分析JobHistory中所有文件得到Hadoop集群的拓扑结构。最后一项紧跟你的JobHistory 中done目录存放位置,一般在${HDOOP_LOG}/history/done中,如果在本地磁盘,则需在目录前加前缀file://,如果在HDFS上需在目录前加前缀“hdfs://”。
下面是截取的job-trace.json和topology.json文件内容:
【job-trace.json】
“priority” : “NORMAL”, “jobID” : “job_201301061549_0003″, “mapTasks” : [ { "attempts" : [ { "location" : null, "hostName" : "HADOOP001", "startTime" : 1357460454343, "finishTime" : 1357460665299, "result" : "KILLED", "shuffleFinished" : -1, "sortFinished" : -1, "attemptID" : "attempt_201301061549_0003_m_000000_0", "hdfsBytesRead" : -1, "hdfsBytesWritten" : -1, "fileBytesRead" : -1, "fileBytesWritten" : -1, "mapInputRecords" : -1, "mapOutputBytes" : -1, "mapOutputRecords" : -1, "combineInputRecords" : -1, "reduceInputGroups" : -1, "reduceInputRecords" : -1, "reduceShuffleBytes" : -1, "reduceOutputRecords" : -1, "spilledRecords" : -1, "mapInputBytes" : -1 } ], “preferredLocations” : [ ], “startTime” : 1357460454686, “finishTime” : -1, “inputBytes” : -1, “inputRecords” : -1, “outputBytes” : -1, “outputRecords” : -1, “taskID” : “task_201301061549_0003_m_000000″, “numberMaps” : -1, “numberReduces” : -1, “taskStatus” : null, “taskType” : “MAP” }, { ….
【topology.json】
{ “name” : “<root>”, “children” : [ { "name" : "default-rack", "children" : [ { "name" : " HADOOP001", "children" : null }, { "name" : " HADOOP002", "children" : null }, { "name" : HADOOP003", "children" : null }, { "name" : " HADOOP004", "children" : null }, { "name" : " HADOOP005", "children" : null }, { "name" : " HADOOP006", "children" : null } ] } ] }</root>
原创文章,转载请注明: 转载自董的博客
本文链接地址: http://dongxicheng.org/mapreduce/hadoop-rumen-introduction/
作者:Dong,作者介绍:http://dongxicheng.org/about/
Copyright © 2012
This feed is for personal, non-commercial use only.
The use of this feed on other websites breaches copyright. If this content is not in your news reader, it makes the page you are viewing an infringement of the copyright. (Digital Fingerprint:
)

mysql'sblobissuitableForStoringBinaryDataWithInareLationalDatabase,而ilenosqloptionslikemongodb,redis和calablesolutionsolutionsolutionsoluntionsoluntionsolundortionsolunsonstructureddata.blobobobissimplobisslowdeperformberbutslowderformandperformancewithlararengedata;

toaddauserinmysql,使用:createUser'username'@'host'Indessify'password'; there'showtodoitsecurely:1)choosethehostcarecarefullytocon trolaccess.2)setResourcelimitswithoptionslikemax_queries_per_hour.3)usestrong,iniquepasswords.4)Enforcessl/tlsconnectionswith

toAvoidCommonMistakeswithStringDatatatPesInMysQl,CloseStringTypenuances,chosethirtightType,andManageEngencodingAndCollationsEttingSefectery.1)usecharforfixed lengengtrings,varchar forvariable-varchar forbariaible length,andtext/blobforlargerdataa.2 seterters seterters seterters

mysqloffersechar,varchar,text,and denumforstringdata.usecharforfixed Lengttrings,varcharerforvariable長度,文本forlarger文本,andenumforenforcingDataAntegrityWithaEtofValues。

優化MySQLBLOB請求可以通過以下策略:1.減少BLOB查詢頻率,使用獨立請求或延遲加載;2.選擇合適的BLOB類型(如TINYBLOB);3.將BLOB數據分離到單獨表中;4.在應用層壓縮BLOB數據;5.對BLOB元數據建立索引。這些方法結合實際應用中的監控、緩存和數據分片,可以有效提升性能。

掌握添加MySQL用戶的方法對於數據庫管理員和開發者至關重要,因為它確保數據庫的安全性和訪問控制。 1)使用CREATEUSER命令創建新用戶,2)通過GRANT命令分配權限,3)使用FLUSHPRIVILEGES確保權限生效,4)定期審計和清理用戶賬戶以維護性能和安全。

chosecharforfixed-lengthdata,varcharforvariable-lengthdata,andtextforlargetextfield.1)chariseffity forconsistent-lengthdatalikecodes.2)varcharsuitsvariable-lengthdatalikenames,ballancingflexibilitibility andperformance.3)

在MySQL中處理字符串數據類型和索引的最佳實踐包括:1)選擇合適的字符串類型,如CHAR用於固定長度,VARCHAR用於可變長度,TEXT用於大文本;2)謹慎索引,避免過度索引,針對常用查詢創建索引;3)使用前綴索引和全文索引優化長字符串搜索;4)定期監控和優化索引,保持索引小巧高效。通過這些方法,可以在讀取和寫入性能之間取得平衡,提升數據庫效率。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Dreamweaver CS6
視覺化網頁開發工具

WebStorm Mac版
好用的JavaScript開發工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),