搜尋
首頁資料庫mysql教程HPVerticaAnalyticsPlatform评测

1.vertica概念 面向数据分析的数据仓库系统解决方案 2.vertica关键特性 ? 标准的SQL接口:可以利用已有的BI、ETL、Hadoop/MapReduce和OLTP环境 ? 高可用:内置的冗余也提升了查询速度 ? 自动化数据库设计:数据库自动安装、优化、管理 ? 高级压缩:十多种压

1.vertica概念

面向数据分析的数据仓库系统解决方案

2.vertica关键特性

? 标准的SQL接口:可以利用已有的BI、ETL、Hadoop/MapReduce和OLTP环境

? 高可用:内置的冗余也提升了查询速度

? 自动化数据库设计:数据库自动安装、优化、管理

? 高级压缩:十多种压缩算法最多可节省90%的空间

? 大规模并行处理:运行于低成本的x86型Linux节点上的原生DB感知集群

? 列式存储、混合模型:无磁盘I/O瓶颈,载入和查询同时进行

? 灵活部署:普通硬件、虚拟环境、云平台

3.vertica安装使用

使用社区版的vertica:免费、无功能和时间限制,最多允许1TB的数据、最多允许三个节点的集群。在A、B、C三台Linux服务器上(CentOS5系统)安装配置包含三个节点的可保证高可用的最基本的vertica cluster。

3.1安装

下载特定于平台的vertica安装包,这里下载的是

vertica-7.0.1-0.x86_64.RHEL5.rpm

创建专门用于vertica管理的用户和组

sudo groupadd verticaAdmin

sudo useradd -g verticaAdmin verticaAdmin

sudo passwd verticaAdmin

在其中一台主机,比如A主机先安装vertica

sudo rpm -ivh vertica-7.0.1-0.x86_64.RHEL5.rpm

安装完成后可在A主机运行/opt/vertica/sbin/install_vertica命令与其他主机搭建vertica cluster

sudo /opt/vertica/sbin/install_vertica –hosts B,C - -rpm /pathto/vertica-7.0.1-0.x86_64.RHEL5.rpm--dba-user verticaAdmin --dba-group verticaAdmin --dba-user-password password--dba-user-home /home/ verticaAdmin --data-dir /data/vertica

3.2几个问题

首先要保证root用户可以通过SSH登录到集群内的所有主机

另外应允许vertica管理员用户,例如上述步骤创建的verticaAdmin,无密码SSH至集群内其他主机(该步骤会在安装过程中自动进行(之所以要保证root用户能SSH到集群内所有主机正是为了此目的),我们只需保证系统设置允许无密码登录即可)

vertica对I/O调度策略、vertica管理员用户的时区设置、磁盘Readahead的值、文件系统、CPU主频扩展策略等方面有特殊要求。如果你不确定你的系统是否符合这些要求也没关系,只要运行一下上述配置cluster的命令便会自动检测并给出提示,只需按提示一步步解决掉问题重新就可以了。

3.3此次安装过程遇到的问题及解决办法

(涉及的文件名、路径、磁盘名称等视你的具体情况而定)

设置I/O调度策略:

sudo sh -c 'echo deadline >/sys/block/sda/queue/scheduler'

并将echo deadline > /sys/block/sda/queue/scheduler写进/etc/rc.local

更新tzdata包,设置时区:

sudo yum update tzdata

在 .profile 或.bashrc /etc/profile中添加export TZ="Asia/Shanghai"

安装pstack、mcelog、sysstat:

yum install pstack

yum install mcelog

yum install sysstat

设置Readahead

sudo blockdev --setra 2048 /dev/sda

sudo blockdev --setra 2048/dev/mapper/VolGroup00-LogVol00

并将命令写进/etc/rc.local

查看和设置CPU频率扩展:

sudo yum install cpufreq-utils

cpufreq-info

sudo cpufreq-set -c CPU序号1,CPU序号2,…… -g performance

配置/etc/ssh/sshd_config中PermitRootLogin为yes并重启(一定要重启)sshd服务:

sudo vim /etc/ssh/sshd_config

/etc/init.d/sshd restart

安装成功后便可以用admintools来管理vertica了,可以使用admintools命令行模式也可以使用图形界面模式。也可以使用vsql客户端来连接、查询数据库。若想卸载vertica也很简单,逐台服务器运行sudo rpm -e vertica-7.0.1-0即可。

3.4一些基本命令:

? admintools: 运行图形界面,根据界面上的内容和提示进行操作。

? admintools –help: 显示可用的命令

? admintools –help_all: 显示更详尽的可用命令帮助

? admintools –t +具体可用的命名: 使用特定的命令

? vsql:连接到vertica

? vsql db:连接到具体数据库

? 使用vsql创建好连接至vertica的回话后\h用户显示帮助。

4.vertica评测

4.1单节点模式下测试环境准备

数据库、schema、table

最初只启用了一个节点A(也即没有搭建cluster),使用admintools在该节点创建不使用密码的数据库 testVertica,使用vsql连接至testVertica数据库,在public这个schema下创建表trace_htlorder、sbtest。

CREATE TABLE trace_htlorder (

TextDataLONG VARCHAR,

TransactionID bigint DEFAULT NULL,

HostNamevarchar(256) DEFAULT NULL,

ApplicationName varchar(256) DEFAULT NULL,

LoginNamevarchar(256) DEFAULT NULL,

SPID intDEFAULT NULL,

Durationbigint DEFAULT NULL,

StartTimedatetime DEFAULT NULL,

EndTimedatetime DEFAULT NULL,

Readsbigint DEFAULT NULL,

Writesbigint DEFAULT NULL,

CPU intDEFAULT NULL,

Successint DEFAULT NULL,

ServerName varchar(256) DEFAULT NULL,

EventClass int DEFAULT NULL,

Error intDEFAULT NULL,

ObjectName char(256) DEFAULT NULL,

DatabaseName varchar(256) DEFAULT NULL,

DBUserName varchar(256) DEFAULT NULL,

RowCountsbigint DEFAULT NULL,

XactSequence bigint DEFAULT NULL,

hashcodebigint DEFAULT NULL,

filtertinyint DEFAULT NULL

)

CREATE TABLE sbtest (

idint NOT NULL,

kint NOT NULL DEFAULT '0',

cchar(120) NOT NULL DEFAULT '',

padchar(60) NOT NULL DEFAULT '',

PRIMARYKEY (id)

);

注意:vertica不支持vertica不支持MySQL中的``、int(N)、comment、text类型、unsigned、AUTO_INCREMENT、KEY k(k) 

两个测试文本:

sbtest.txt-17G-包含如下格式的数据2亿行(数据来自于sysbench自动创建)

1*2000*"aaaaaaaaaaabbbbbbbbbbccccccccccdddddddddd"*"ddddddddddccccccccccbbbbbbbbbbaaaaaaaaaa"

trace_order_less.txt-20G-包含如下格式的数据3千万行(数据来自与真实的生产环境)

"SELECT costrate FROM FltOrderDB..O_Flight(nolock) WHERE OrderID=1030812255"*0*"VMS01760"*".NetSqlClient DataProvider"*"uws_W_AppleOrder"*172*0*"2014-05-1500:00:00"*"2014-05-1500:00:00"*4*0*0*0*""*0*0*""*"FltOrderDB"*""*1*0*3384460570715180659*1

4.2 单节点vertica与infobright数据载入测试

单点的社区版vertica

copy public.sbtest from '/tmp/sbtest.txt'DELIMITER '*' ENCLOSED BY '"'DIRECT;

Time: First fetch (1 row): 438790.789 ms. Allrows formatted: 438790.838 ms

数据被压缩为3.8G

copy public.trace_htlorder from'/data/tmp/trace_order_less.txt' DELIMITER '*' ENCLOSED BY '"' DIRECT;

Time: First fetch (1 row): 3926331.365 ms. All rowsformatted: 3926331.419 ms

数据被压缩为1.4G

数据载入过程中vertica会使用到比原始数据文件大得多的磁盘空间, 20G的数据文件LOAD过程中最多的时候会占用到40G的空间

copy 命令三个参数

? AUTO 将数据载入WOS,WOS满后直接载入到ROS。适用于

? DIRECT 将数据直接载入到ROS。适用于100MB以上的数据

? TRICKLE 适用于增量式的批量插入数据,直接把数据载入到WOS,WOS满后报错,整个载入过程回滚。

社区版infobright

创建数据库和表

create database testInfobright;

use testInfobright;

CREATE TABLE `trace_htlorder` (

`TextData` text,

`TransactionID` bigint(20) DEFAULT NULL,

`HostName` varchar(256) DEFAULT NULL COMMENT 'lookup',

`ApplicationName` varchar(256) DEFAULT NULL,

`LoginName` varchar(256) DEFAULT NULL COMMENT 'lookup',

`SPID`int(11) DEFAULT NULL,

`Duration` bigint(20) DEFAULT NULL,

`StartTime` datetime DEFAULT NULL,

`EndTime`datetime DEFAULT NULL,

`Reads`bigint(20) DEFAULT NULL,

`Writes`bigint(20) DEFAULT NULL,

`CPU`int(11) DEFAULT NULL,

`Success`int(11) DEFAULT NULL,

`ServerName` varchar(256) DEFAULT NULL COMMENT 'lookup',

`EventClass` int(11) DEFAULT NULL,

`Error`int(11) DEFAULT NULL,

`ObjectName` varchar(256) DEFAULT NULL COMMENT 'lookup',

`DatabaseName` varchar(256) DEFAULT NULL COMMENT 'lookup',

`DBUserName` varchar(256) DEFAULT NULL,

`RowCounts` bigint(20) DEFAULT NULL,

`XactSequence` bigint(20) DEFAULT NULL,

`hashcode`bigint(20) DEFAULT NULL,

`filter`tinyint(4) DEFAULT NULL

) ENGINE=BRIGHTHOUSE DEFAULT CHARSET=utf8

 

CREATE TABLE `sbtest` (

`id`bigint(10) NOT NULL,

`k`int(10) NOT NULL DEFAULT '0',

`c`char(120) NOT NULL DEFAULT '',

`pad`char(60) NOT NULL DEFAULT ''

)

同样的两个数据文件sbtest.txt、trace_order_less.txt

load data infile '/data/tmp/sbtest.txt' intotable testInfobright.sbtest FIELDS TERMINATED BY '*' OPTIONALLY ENCLOSED BY'"' ;

Query OK, 200000000 rows affected (40 min 38.89sec)

数据被压缩为2.8G

load data infile '/data/tmp/trace_order_less.txt'into table testInfobright.trace_htlorder FIELDS TERMINATED BY '*' OPTIONALLYENCLOSED BY '"' ;

Query OK, 30000000 rows affected (11 min 13.68sec)

数据被压缩为0.45G

结论:

 

Infobright

Vertica

Infobright

Vertica

导入文件类型

sysbench压测工具生成的格式化数据,每行的文本内容具有基本相同的长度和内容

生产环境DB实际产生的trace信息,包含各种不同的调用语句,文本长度和内容都各异

原始文件大小(GB)

17

20

导入后大小(GB)

2.8

3.8

0.45

1.4

压缩比

83%

77%

97%

93%

导入时间(sec)

2440

438

673

3926

导入速度(MB/sec)

7.13

39.74

30.43

5.21

4.3单点的vertica与infobright数据查询测试

trace_htlorder表6千万行数据

#常用查询 WHERE BETWEEN AND LIKE ORDER BY

sql01 = "SELECTTextData,StartTime,EndTime,DatabaseName,ObjectName,HostName,ApplicationName,LoginName,Duration,Reads,Writes,CPU,RowCounts,Error,HashCodeFROM trace_htlorder WHERE StartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 457.178461075

total: 2516.28422379

#常用查询 WHERE BETWEEN AND LIKE GROUP BY

sql02 = "SELECTTextData,StartTime,EndTime,DatabaseName ,ObjectName,HostName,ApplicationName,LoginName,Duration,Reads,Writes,CPU,RowCounts,Error,HashCodeFROM trace_htlorder WHERE StartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 278.15408802

total: 3426.65513086

#全字段,无条件 一千万行

sql03 = "SELECT TextData,TransactionID,HostName ,ApplicationName,LoginName,SPID,Duration,StartTime,EndTime,Reads,Writes,CPU ,Success,ServerName,EventClass,Error,ObjectName,DatabaseName,DBUserName,RowCoun

ts,XactSequence,hashcode,filter FROMtrace_htlorder limit 100000"

total: 60.5239160061

total: 26.4451019764

#个别字段,无条件 一千万行

sql04= "SELECT HostName,ApplicationName,ServerName,DatabaseName,DBUserName FROM trace_htlorder limit100000"

total: 3.23667478561

total: 3.97934985161

#全字段,WHERE BETWEEN AND LIKE GROUP BY

sql05 = "SELECT TextData,TransactionID,HostName ,ApplicationName,LoginName,SPID,Duration,StartTime,EndTime,Reads,Writes,CPU ,Success,ServerName,EventClass,Error,ObjectName,DatabaseName,DBUserName,RowCoun

ts,XactSequence,hashcode,filter FROMtrace_htlorder WHERE StartTime >= '2014-05-15 00:00:00 ' AND StartTime

,ApplicationName,LoginName,SPID,Duration,StartTime,EndTime,Reads,Writes,CPU ,Success,ServerName,EventClass,Error,ObjectName,DatabaseName,DBUserName,RowCounts,XactSequence,hashcode,filter"

total: 58.3177318573

total: 1042.12857699

#个别字段,WHERE BETWEEN AND LIKE GROUP BY

sql06 = "SELECT HostName,ApplicationName,ServerName,DatabaseName,DBUserName FROM trace_htlorder WHEREStartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 53.3943109512

total: 987.122587919 

#全字段,WHERE BETWEEN AND LIKE ORDER BY 分别按不同字段排序DESC/ASC

sql07 = "SELECT TextData,TransactionID,HostName,ApplicationName,LoginName,SPID,Duration,StartTime,EndTime,Reads,Writes ,CPU,Success,ServerName,EventClass,Error,ObjectName,DatabaseName,DBUserName,RowCoun

ts,XactSequence,hashcode,filter FROMtrace_htlorder WHERE StartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 39.8180880547

total: 984.204402924

sql08 = "SELECT TextData,TransactionID,HostName ,ApplicationName,LoginName,SPID,Duration,StartTime,EndTime,Reads,Writes,CPU ,Success,ServerName,EventClass,Error,ObjectName,DatabaseName,DBUserName,RowCoun

ts,XactSequence,hashcode,filter FROMtrace_htlorder WHERE StartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 40.1778831482

total: 984.4428339

sql09 = "SELECT TextData,TransactionID,HostName,ApplicationName,LoginName,SPID,Duration,StartTime,EndTime,Reads,Writes ,CPU,Success,ServerName,EventClass,Error,ObjectName, DatabaseName,DBUserName,RowCoun

ts,XactSequence,hashcode,filter FROMtrace_htlorder WHERE StartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 39.5487890244

total: 984.184374094

sql10 = "SELECT TextData,TransactionID,HostName,ApplicationName,LoginName,SPID,Duration,StartTime,EndTime,Reads,Writes ,CPU,Success,ServerName,EventClass,Error,ObjectName,DatabaseName,DBUserName,RowCoun

ts,XactSequence,hashcode,filter FROM trace_htlorderWHERE StartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 39.7879989147

total: 984.206639051

#个别字段,WHERE BETWEEN AND LIKE ORDER BY 分别按不同字段排序DESC/ASC

sql11 = "SELECTHostName,ApplicationName,ServerName,DatabaseName,DBUserName FROM trace_htlorderWHERE StartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 48.5239658356

total: 990.392697096

sql12 = "SELECT HostName,ApplicationName,ServerName,DatabaseName,DBUserName FROM trace_htlorder WHEREStartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 48.5928411484

total: 990.359231949

sql13 = "SELECT HostName,ApplicationName,ServerName,DatabaseName,DBUserName FROM trace_htlorder WHEREStartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 48.5275650024

total: 990.474725962

sql14 = "SELECT HostName,ApplicationName,ServerName,DatabaseName,DBUserName FROM trace_htlorder WHEREStartTime >= '2014-05-15 00:00:00 ' AND StartTime

total: 48.8557629585

total: 990.433614969

total为无间断连续运行十次的总时间,上边为vertica的值,下边为infobright的值

14条语句各运行十遍的总时间:

vertica:1264.63847303

infobright:15901.3139489

结论

对于包含like、groupby、order by等条件的数据 ,vertica查询速度明显快于infobright。最快可达20倍以上。对于没有查询条件的语句两者相当,查询列为全部字段时vertica劣于infobright。查询列为部分字段时vertica略优于infobright。

注意事项

vertica中 longvarchar 不支持 LIKE操作,只有char,varchar,binary,varbinary支持,所以需先将原long varchar改为varchar

alter table trace_htlorder alter column TextDataset data type varchar(65000);

infobright SQL 中不能包含关键字 如 database,host,writes,reads等,关键字需用反引号括起来,若是在linux shell里直接以命令方式执行还需对反引号转义,否则会被解析为命令。

4.4测试包含三个节点的verticacluster(k-safety设置为1)导入数据

查看cluster状态

dmintools -t view_cluster

DB | Host | State

-------------+------+-------

testVertica | ALL | UP

查看cluster中的节点

admintools -t list_allnodes;

Node | Host | State | Version | DB

------------------------+---------------+-------+-------------------+-------------

v_testvertica_node0001 | 192.X.X.A | UP | vertica-7.0.1.000 | testVertica

v_testvertica_node0003 | 192.X.X.B | UP | vertica-7.0.1.000 | testVertica

v_testvertica_node0004 | 192.X.X.C | UP | vertica-7.0.1.000 | testVertica

测试用的数据库表

databases:testVertica

schema:public

table:sbtest、trace_htlorder

测试只在v_testvertica_node0001节点导入数据后的数据分布情况

数据:sbtest.txt -17G-2亿行

copy public.sbtest from '/data/tmp/sbtest.txt' onv_testvertica_node0001 DELIMITER'*' ENCLOSED BY '"' DIRECT;

Time: First fetch (1 row): 233226.446 ms. Allrows formatted: 233226.528 ms

原来单节点时时间的一般左右,数据被压缩后各节点上大约有2.5G总共2.5*3=7.5G刚好是原来3.8G的两倍左右,证明vertica在cluster内存储了两个副本以保证值为1的k-safety

数据:trace_order_less.txt -20G-3千万行

copy public.trace_htlorder from '/data/tmp/trace_order_less.txt'on v_testvertica_node0001 DELIMITER'*' ENCLOSED BY '"' DIRECT;

Time: First fetch (1 row): 1927267.476 ms. Allrows formatted: 1927267.623 ms

原来单节点时时间的一般左右,数据被压缩后各节点上大约有1G总共1*3=3G刚好是原来1.4G的两倍左右,证明vertica在cluster内存储了两个副本以保证值为1的k-safety

测试在v_testvertica_node0001、 v_testvertica_node0003、 v_testvertica_node0004多节点并行导入

数据:sbtest.txt -17G-2亿行,分别存在于A、B、C三个节点中

copy public.sbtest from '/data/tmp/sbtest.txt' onv_testvertica_node0001,'/tmp/sbtest.txt' on v_testvertica_node0003,'/tmp/sbtest.txt'on v_testvertica_node0004 DELIMITER '*' ENCLOSED BY '"' DIRECT;

Time: First fetch (1 row): 364039.015 ms. Allrows formatted: 364039.062 ms

6亿行数据被导入cluster用时6.3分钟

数据:trace_order_less.txt -20G-3千万行,别存在于A、B、C三个节点中

copy public.trace_htlorder from'/data/tmp/trace_order_less.txt' onv_testvertica_node0001,'/tmp/trace_order_less.txt' onv_testvertica_node0003,'/tmp/trace_order_less.txt' on v_testvertica_node0004DELIMITER '*' ENCLOSED BY '"'DIRECT;

Time: First fetch (1 row): 6336117.459 ms. Allrows formatted: 6336117.554 ms

9千万行数据被导入cluster用时105分钟

vertica cluster故障恢复测试

先检查数据

select count(*) from sbtest;

select count(*) from trace_htlorder;

查看cluster状态

dmintools -t view_cluster

DB | Host | State

-------------+------+-------

testVertica | ALL | UP

关闭B上的vertica,并查看状态

admintools -t stop_node -s 192.X.X.B

admintools -t view_cluster

DB | Host | State

-------------+---------------+-------

testVertica | 192.X.X.A | UP

testVertica| 192.X.X.B | DOWN

testVertica | 192.X.X.C | UP

重新检查数据发现数据并未丢失,还是原来的数目

select count(*) from sbtest;

select count(*) from trace_htlorder;

重启B上的vertica,并查看状态

admintools -t restart_node -d testVertica -s 192.X.X.B

admintools -t view_cluster

DB | Host | State

-------------+------+-------

testVertica | ALL | UP

整个集群恢复原状

逐次关闭B、C上的vertica,并查看状态

admintools -t stop_node -s 192.X.X.B

admintools -t stop_node -s 192.X.X.C

admintools -t view_cluster

DB | Host | State

-------------+------+-------

testVertica | ALL | DOWN

发现我们虽然只关闭了两个节点,还有一个节点没有手工关闭,但vertica已经非常智能的关闭了整个cluster,因为这时一个node已经不能保证高可用了,该node一旦异常down掉数据便会损失,所以vertica干脆关掉整个cluster。

重启整个cluster

admintools –t start_db –d testVertica

参考:

https://my.vertica.com/docs/7.0.x/HTML/index.htm

https://www.infobright.com/

http://ftp.gnu.org/gnu/time/

附件:

vertica的python连接器:vertica-python-0.2.0的安装

require:Python2.7、zlib-devel、openssl-devel、pytz、python-dateutil、pip、psycopg2

python-dateutil

require:six

psycopg2

require: postgresql-devel

yum install zlib-devel

yum install openssl-devel

yum install postgresql-devel

cd Python2.7->./configure --with-zlib ->make -> sudo make install

cd pytz ->sudo python2.7 setup.py install

cd six ->sudo python2.7 setup.py install

cd python-dateutil ->sudo python2.7 setup.pyinstall

cd pip ->sudo python2.7 setup.py install

cd psycopg ->sudo python2.7 setup.py install

cdvertica-python ->sudo python2.7 setup.py install#encoding:utf-8

使用SQL命令运行DBD(DatabaseDesigner)

selectDESIGNER_CREATE_DESIGN('testVerticaDesigner');

select DESIGNER_SET_DESIGN_KSAFETY('testVerticaDesigner',1);

SELECTDESIGNER_SET_OPTIMIZATION_OBJECTIVE('testVerticaDesigner','QUERY');

SELECTDESIGNER_SET_DESIGN_TYPE('testVerticaDesigner','INCREMENTAL');

SELECTDESIGNER_ADD_DESIGN_QUERIES('testVerticaDesigner','/home/op1/testVertia/querys.sql','true');

SELECTDESIGNER_ADD_DESIGN_TABLES('testVerticaDesigner','public.trace_htlorder','true');

SELECTDESIGNER_RUN_POPULATE_DESIGN_AND_DEPLOY('testVerticaDesigner','/home/op1/testVertia/vertica_design_files/vertica_design_DDL','/home/op1/testVertia/vertica_design_files/vertica_design_deployment_scripts');

SELECTDESIGNER_WAIT_FOR_DESIGN('testVerticaDesigner');

SELECTDESIGNER_OUTPUT_ALL_DESIGN_PROJECTIONS('testVerticaDesigner');

SELECTDESIGNER_OUTPUT_DEPLOYMENT_SCRIPT('testVerticaDesigner')

SELECTDESIGNER_CANCEL_POPULATE_DESIGN('testVerticaDesigner')

SELECTDESIGNER_DROP_DESIGN('testVerticaDesigner')

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
MySQL的位置:數據庫和編程MySQL的位置:數據庫和編程Apr 13, 2025 am 12:18 AM

MySQL在數據庫和編程中的地位非常重要,它是一個開源的關係型數據庫管理系統,廣泛應用於各種應用場景。 1)MySQL提供高效的數據存儲、組織和檢索功能,支持Web、移動和企業級系統。 2)它使用客戶端-服務器架構,支持多種存儲引擎和索引優化。 3)基本用法包括創建表和插入數據,高級用法涉及多表JOIN和復雜查詢。 4)常見問題如SQL語法錯誤和性能問題可以通過EXPLAIN命令和慢查詢日誌調試。 5)性能優化方法包括合理使用索引、優化查詢和使用緩存,最佳實踐包括使用事務和PreparedStatemen

MySQL:從小型企業到大型企業MySQL:從小型企業到大型企業Apr 13, 2025 am 12:17 AM

MySQL適合小型和大型企業。 1)小型企業可使用MySQL進行基本數據管理,如存儲客戶信息。 2)大型企業可利用MySQL處理海量數據和復雜業務邏輯,優化查詢性能和事務處理。

幻影是什麼讀取的,InnoDB如何阻止它們(下一個鍵鎖定)?幻影是什麼讀取的,InnoDB如何阻止它們(下一個鍵鎖定)?Apr 13, 2025 am 12:16 AM

InnoDB通過Next-KeyLocking機制有效防止幻讀。 1)Next-KeyLocking結合行鎖和間隙鎖,鎖定記錄及其間隙,防止新記錄插入。 2)在實際應用中,通過優化查詢和調整隔離級別,可以減少鎖競爭,提高並發性能。

mysql:不是編程語言,而是...mysql:不是編程語言,而是...Apr 13, 2025 am 12:03 AM

MySQL不是一門編程語言,但其查詢語言SQL具備編程語言的特性:1.SQL支持條件判斷、循環和變量操作;2.通過存儲過程、觸發器和函數,用戶可以在數據庫中執行複雜邏輯操作。

MySQL:世界上最受歡迎的數據庫的簡介MySQL:世界上最受歡迎的數據庫的簡介Apr 12, 2025 am 12:18 AM

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

MySQL的重要性:數據存儲和管理MySQL的重要性:數據存儲和管理Apr 12, 2025 am 12:18 AM

MySQL是一個開源的關係型數據庫管理系統,適用於數據存儲、管理、查詢和安全。 1.它支持多種操作系統,廣泛應用於Web應用等領域。 2.通過客戶端-服務器架構和不同存儲引擎,MySQL高效處理數據。 3.基本用法包括創建數據庫和表,插入、查詢和更新數據。 4.高級用法涉及復雜查詢和存儲過程。 5.常見錯誤可通過EXPLAIN語句調試。 6.性能優化包括合理使用索引和優化查詢語句。

為什麼要使用mysql?利益和優勢為什麼要使用mysql?利益和優勢Apr 12, 2025 am 12:17 AM

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

描述InnoDB鎖定機制(共享鎖,獨家鎖,意向鎖,記錄鎖,間隙鎖,下一鍵鎖)。描述InnoDB鎖定機制(共享鎖,獨家鎖,意向鎖,記錄鎖,間隙鎖,下一鍵鎖)。Apr 12, 2025 am 12:16 AM

InnoDB的鎖機制包括共享鎖、排他鎖、意向鎖、記錄鎖、間隙鎖和下一個鍵鎖。 1.共享鎖允許事務讀取數據而不阻止其他事務讀取。 2.排他鎖阻止其他事務讀取和修改數據。 3.意向鎖優化鎖效率。 4.記錄鎖鎖定索引記錄。 5.間隙鎖鎖定索引記錄間隙。 6.下一個鍵鎖是記錄鎖和間隙鎖的組合,確保數據一致性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用