【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】 目的 实际事物模型中,并非所有东西都是线性可分的。 需要寻找一种方法对线性不可分数据进行划分。 原理 ,我们推导出对于线性可分数据,最佳划分超平面应满足: 现在我们想引入
【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】
目的
- 实际事物模型中,并非所有东西都是线性可分的。
- 需要寻找一种方法对线性不可分数据进行划分。
原理
,我们推导出对于线性可分数据,最佳划分超平面应满足:
现在我们想引入一些东西,来表示那些被错分的数据点(比如噪点),对划分的影响。
如何来表示这些影响呢?
被错分的点,离自己应当存在的区域越远,就代表了,这个点“错”得越严重。
所以我们引入,为对应样本离同类区域的距离。
接下来的问题是,如何将这种错的程度,转换为和原模型相同的度量呢?
我们再引入一个常量C,表示和原模型度量的转换关系,用C对
进行加权和,来表征错分点对原模型的影响,这样我们得到新的最优化问题模型:
关于参数C的选择, 明显的取决于训练样本的分布情况。 尽管并不存在一个普遍的答案,但是记住下面几点规则还是有用的:
- C比较大时分类错误率较小,但是间隔也较小。 在这种情形下, 错分类对模型函数产生较大的影响,既然优化的目的是为了最小化这个模型函数,那么错分类的情形必然会受到抑制。
- C比较小时间隔较大,但是分类错误率也较大。 在这种情形下,模型函数中错分类之和这一项对优化过程的影响变小,优化过程将更加关注于寻找到一个能产生较大间隔的超平面。
说白了,C的大小表征了,错分数据对原模型的影响程度。于是C越大,优化时越关注错分问题。反之越关注能否产生一个较大间隔的超平面。
开始使用
#include <iostream><span> #include </span><opencv2><span> #include </span><opencv2><span> #include </span><opencv2> <span>#define</span> NTRAINING_SAMPLES 100 <span>//</span><span> 每类训练样本的数量</span> <span>#define</span> FRAC_LINEAR_SEP 0.9f <span>//</span><span> 线性可分部分的样本组成比例</span> <span>using</span> <span>namespace</span><span> cv; </span><span>using</span> <span>namespace</span><span> std; </span><span>int</span><span> main(){ </span><span>//</span><span> 用于显示的数据</span> <span>const</span> <span>int</span> WIDTH = <span>512</span>, HEIGHT = <span>512</span><span>; Mat I </span>=<span> Mat::zeros(HEIGHT, WIDTH, CV_8UC3); </span><span>/*</span><span> 1. 随即产生训练数据 </span><span>*/</span><span> Mat trainData(</span><span>2</span>*NTRAINING_SAMPLES, <span>2</span><span>, CV_32FC1); Mat labels (</span><span>2</span>*NTRAINING_SAMPLES, <span>1</span><span>, CV_32FC1); RNG rng(</span><span>100</span>); <span>//</span><span> 生成随即数 </span><span>//</span><span> 设置线性可分的训练数据</span> <span>int</span> nLinearSamples = (<span>int</span>) (FRAC_LINEAR_SEP *<span> NTRAINING_SAMPLES); </span><span>//</span><span> 生成分类1的随机点</span> Mat trainClass = trainData.rowRange(<span>0</span><span>, nLinearSamples); </span><span>//</span><span> 点的x坐标在[0, 0.4)之间</span> Mat c = trainClass.colRange(<span>0</span>, <span>1</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span>), Scalar(<span>0.4</span> *<span> WIDTH)); </span><span>//</span><span> 点的y坐标在[0, 1)之间</span> c = trainClass.colRange(<span>1</span>,<span>2</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT)); </span><span>//</span><span> 生成分类2的随机点</span> trainClass = trainData.rowRange(<span>2</span>*NTRAINING_SAMPLES-nLinearSamples, <span>2</span>*<span>NTRAINING_SAMPLES); </span><span>//</span><span> 点的x坐标在[0.6, 1]之间</span> c = trainClass.colRange(<span>0</span> , <span>1</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.6</span>*<span>WIDTH), Scalar(WIDTH)); </span><span>//</span><span> 点的y坐标在[0, 1)之间</span> c = trainClass.colRange(<span>1</span>,<span>2</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT)); </span><span>/*</span><span> 设置非线性可分的训练数据 </span><span>*/</span> <span>//</span><span> 生成分类1和分类2的随机点</span> trainClass = trainData.rowRange( nLinearSamples, <span>2</span>*NTRAINING_SAMPLES-<span>nLinearSamples); </span><span>//</span><span> 点的x坐标在[0.4, 0.6)之间</span> c = trainClass.colRange(<span>0</span>,<span>1</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.4</span>*WIDTH), Scalar(<span>0.6</span>*<span>WIDTH)); </span><span>//</span><span> 点的y坐标在[0, 1)之间</span> c = trainClass.colRange(<span>1</span>,<span>2</span><span>); rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT)); </span><span>/*</span><span>*/</span><span> labels.rowRange( </span><span>0</span>, NTRAINING_SAMPLES).setTo(<span>1</span>); <span>//</span><span> Class 1</span> labels.rowRange(NTRAINING_SAMPLES, <span>2</span>*NTRAINING_SAMPLES).setTo(<span>2</span>); <span>//</span><span> Class 2</span> <span>/*</span><span> 设置支持向量机参数 </span><span>*/</span><span> CvSVMParams </span><span>params</span><span>; </span><span>params</span>.svm_type =<span> SVM::C_SVC; </span><span>params</span>.C = <span>0.1</span><span>; </span><span>params</span>.kernel_type =<span> SVM::LINEAR; </span><span>params</span>.term_crit = TermCriteria(CV_TERMCRIT_ITER, (<span>int</span>)1e7, 1e-<span>6</span><span>); </span><span>/*</span><span> 3. 训练支持向量机 </span><span>*/</span><span> cout </span>"<span>Starting training process</span><span>"</span> endl; CvSVM svm; svm.train(trainData, labels, Mat(), Mat(), <span>params</span><span>); cout </span>"<span>Finished training process</span><span>"</span> endl; <span>/*</span><span> 4. 显示划分区域 </span><span>*/</span><span> Vec3b green(</span><span>0</span>,<span>100</span>,<span>0</span>), blue (<span>100</span>,<span>0</span>,<span>0</span><span>); </span><span>for</span> (<span>int</span> i = <span>0</span>; i i) <span>for</span> (<span>int</span> j = <span>0</span>; j j){ Mat sampleMat = (Mat_float>(<span>1</span>,<span>2</span>) i, j); <span>float</span> response =<span> svm.predict(sampleMat); </span><span>if</span> (response == <span>1</span>) I.at<vec3b>(j, i) =<span> green; </span><span>else</span> <span>if</span> (response == <span>2</span>) I.at<vec3b>(j, i) =<span> blue; } </span><span>/*</span><span> 5. 显示训练数据 </span><span>*/</span> <span>int</span> thick = -<span>1</span><span>; </span><span>int</span> lineType = <span>8</span><span>; </span><span>float</span><span> px, py; </span><span>//</span><span> 分类1</span> <span>for</span> (<span>int</span> i = <span>0</span>; i i){ px = trainData.atfloat>(i,<span>0</span><span>); py </span>= trainData.atfloat>(i,<span>1</span><span>); circle(I, Point( (</span><span>int</span>) px, (<span>int</span>) py ), <span>3</span>, Scalar(<span>0</span>, <span>255</span>, <span>0</span><span>), thick, lineType); } </span><span>//</span><span> 分类2</span> <span>for</span> (<span>int</span> i = NTRAINING_SAMPLES; i 2*NTRAINING_SAMPLES; ++<span>i){ px </span>= trainData.atfloat>(i,<span>0</span><span>); py </span>= trainData.atfloat>(i,<span>1</span><span>); circle(I, Point( (</span><span>int</span>) px, (<span>int</span>) py ), <span>3</span>, Scalar(<span>255</span>, <span>0</span>, <span>0</span><span>), thick, lineType); } </span><span>/*</span><span> 6. 显示支持向量 */</span> thick = <span>2</span><span>; lineType </span>= <span>8</span><span>; </span><span>int</span> x =<span> svm.get_support_vector_count(); </span><span>for</span> (<span>int</span> i = <span>0</span>; i i) { <span>const</span> <span>float</span>* v =<span> svm.get_support_vector(i); circle( I, Point( (</span><span>int</span>) v[<span>0</span>], (<span>int</span>) v[<span>1</span>]), <span>6</span>, Scalar(<span>128</span>, <span>128</span>, <span>128</span><span>), thick, lineType); } imwrite(</span><span>"</span><span>result.png</span><span>"</span>, I); <span>//</span><span> 保存图片</span> imshow(<span>"</span><span>SVM线性不可分数据划分</span><span>"</span>, I); <span>//</span><span> 显示给用户</span> waitKey(<span>0</span><span>); }</span></vec3b></vec3b></opencv2></opencv2></opencv2></iostream>
设置SVM参数
这里的参数设置可以参考一下的API。
<span>CvSVMParams</span> <span>params</span><span>;</span> <span>params</span><span>.</span><span>svm_type</span> <span>=</span> <span>SVM</span><span>::</span><span>C_SVC</span><span>;</span> <span>params</span><span>.</span><span>C</span> <span>=</span> <span>0.1</span><span>;</span> <span>params</span><span>.</span><span>kernel_type</span> <span>=</span> <span>SVM</span><span>::</span><span>LINEAR</span><span>;</span> <span>params</span><span>.</span><span>term_crit</span> <span>=</span> <span>TermCriteria</span><span>(</span><span>CV_TERMCRIT_ITER</span><span>,</span> <span>(</span><span>int</span><span>)</span><span>1e7</span><span>,</span> <span>1e-6</span><span>);</span>
可以看到,这次使用的是C类支持向量分类机。其参数C的值为0.1。
结果
- 程序创建了一张图像,在其中显示了训练样本,其中一个类显示为浅绿色圆圈,另一个类显示为浅蓝色圆圈。
- 训练得到SVM,并将图像的每一个像素分类。 分类的结果将图像分为蓝绿两部分,中间线就是最优分割超平面。由于样本非线性可分, 自然就有一些被错分类的样本。 一些绿色点被划分到蓝色区域, 一些蓝色点被划分到绿色区域。
- 最后支持向量通过灰色边框加重显示。
被山寨的原文
Support Vector Machines for Non-Linearly Separable Data . OpenCV.org

如何有效監控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。 1.使用mysqladmin查看連接數。 2.用SHOWGLOBALSTATUS查看查詢數。 3.PMM提供詳細性能數據和圖形化界面。 4.MySQLEnterpriseMonitor提供豐富的監控功能和報警機制。

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显著差异,选择时需考虑项目规模和未来扩展性。

在需要高可用性、高級安全性和良好集成性的企業級應用場景下,應選擇SQLServer而不是MySQL。 1)SQLServer提供企業級功能,如高可用性和高級安全性。 2)它與微軟生態系統如VisualStudio和PowerBI緊密集成。 3)SQLServer在性能優化方面表現出色,支持內存優化表和列存儲索引。

mySqlManagesCharacterSetsetSandCollationsyutusututf-8asthEdeFault,允許ConfigurationAtdataBase,table和columnlevels,AndrequiringCarefullageLignmentToavoidMismatches.1)setDefeaultCharactersetTercharactersetEtCollacterSeteTandColletationForAdataBase.2)conformentcollecharactersettersetertersetcollatertersetcollationcollation

MySQL觸發器是與表相關聯的自動執行的存儲過程,用於在特定數據操作時執行一系列操作。 1)觸發器定義與作用:用於數據校驗、日誌記錄等。 2)工作原理:分為BEFORE和AFTER,支持行級觸發。 3)使用示例:可用於記錄薪資變更或更新庫存。 4)調試技巧:使用SHOWTRIGGERS和SHOWCREATETRIGGER命令。 5)性能優化:避免複雜操作,使用索引,管理事務。

在MySQL中創建和管理用戶賬戶的步驟如下:1.創建用戶:使用CREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';2.分配權限:使用GRANTSELECT,INSERT,UPDATEONmydatabase.TO'newuser'@'localhost';3.修正權限錯誤:使用REVOKEALLPRIVILEGESONmydatabase.FROM'newuser'@'localhost';然後重新分配權限;4.優化權限:使用SHOWGRA

MySQL適合快速開發和中小型應用,Oracle適合大型企業和高可用性需求。 1)MySQL開源、易用,適用於Web應用和中小型企業。 2)Oracle功能強大,適合大型企業和政府機構。 3)MySQL支持多種存儲引擎,Oracle提供豐富的企業級功能。

MySQL相比其他關係型數據庫的劣勢包括:1.性能問題:在處理大規模數據時可能遇到瓶頸,PostgreSQL在復雜查詢和大數據處理上表現更優。 2.擴展性:水平擴展能力不如GoogleSpanner和AmazonAurora。 3.功能限制:在高級功能上不如PostgreSQL和Oracle,某些功能需要更多自定義代碼和維護。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

SublimeText3漢化版
中文版,非常好用

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)