搜尋
首頁資料庫mysql教程【OpenCV2.4】SVM处理线性不可分的例子

【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】 目的 实际事物模型中,并非所有东西都是线性可分的。 需要寻找一种方法对线性不可分数据进行划分。 原理 ,我们推导出对于线性可分数据,最佳划分超平面应满足: 现在我们想引入

【原文:http://www.cnblogs.com/justany/archive/2012/11/26/2788509.html】

目的

  • 实际事物模型中,并非所有东西都是线性可分的。
  • 需要寻找一种方法对线性不可分数据进行划分。

原理

,我们推导出对于线性可分数据,最佳划分超平面应满足:

    【OpenCV2.4】SVM处理线性不可分的例子

现在我们想引入一些东西,来表示那些被错分的数据点(比如噪点),对划分的影响。

如何来表示这些影响呢?

被错分的点,离自己应当存在的区域越远,就代表了,这个点“错”得越严重。

所以我们引入【OpenCV2.4】SVM处理线性不可分的例子,为对应样本离同类区域的距离。

【OpenCV2.4】SVM处理线性不可分的例子

接下来的问题是,如何将这种错的程度,转换为和原模型相同的度量呢?

我们再引入一个常量C,表示【OpenCV2.4】SVM处理线性不可分的例子和原模型度量的转换关系,用C对【OpenCV2.4】SVM处理线性不可分的例子进行加权和,来表征错分点对原模型的影响,这样我们得到新的最优化问题模型:

    【OpenCV2.4】SVM处理线性不可分的例子

关于参数C的选择, 明显的取决于训练样本的分布情况。 尽管并不存在一个普遍的答案,但是记住下面几点规则还是有用的:

  • C比较大时分类错误率较小,但是间隔也较小。 在这种情形下, 错分类对模型函数产生较大的影响,既然优化的目的是为了最小化这个模型函数,那么错分类的情形必然会受到抑制。
  • C比较小时间隔较大,但是分类错误率也较大。 在这种情形下,模型函数中错分类之和这一项对优化过程的影响变小,优化过程将更加关注于寻找到一个能产生较大间隔的超平面。

 说白了,C的大小表征了,错分数据对原模型的影响程度。于是C越大,优化时越关注错分问题。反之越关注能否产生一个较大间隔的超平面。

开始使用

【OpenCV2.4】SVM处理线性不可分的例子

#include <iostream><span>
#include </span><opencv2><span>
#include </span><opencv2><span>
#include </span><opencv2>

<span>#define</span> NTRAINING_SAMPLES   100         <span>//</span><span> 每类训练样本的数量</span>
<span>#define</span> FRAC_LINEAR_SEP     0.9f        <span>//</span><span> 线性可分部分的样本组成比例</span>

<span>using</span> <span>namespace</span><span> cv;
</span><span>using</span> <span>namespace</span><span> std;

</span><span>int</span><span> main(){
    </span><span>//</span><span> 用于显示的数据</span>
    <span>const</span> <span>int</span> WIDTH = <span>512</span>, HEIGHT = <span>512</span><span>;
    Mat I </span>=<span> Mat::zeros(HEIGHT, WIDTH, CV_8UC3);

    </span><span>/*</span><span> 1. 随即产生训练数据 </span><span>*/</span><span>
    Mat trainData(</span><span>2</span>*NTRAINING_SAMPLES, <span>2</span><span>, CV_32FC1);
    Mat labels   (</span><span>2</span>*NTRAINING_SAMPLES, <span>1</span><span>, CV_32FC1);
    
    RNG rng(</span><span>100</span>); <span>//</span><span> 生成随即数

    </span><span>//</span><span> 设置线性可分的训练数据</span>
    <span>int</span> nLinearSamples = (<span>int</span>) (FRAC_LINEAR_SEP *<span> NTRAINING_SAMPLES);

    </span><span>//</span><span> 生成分类1的随机点</span>
    Mat trainClass = trainData.rowRange(<span>0</span><span>, nLinearSamples);
    </span><span>//</span><span> 点的x坐标在[0, 0.4)之间</span>
    Mat c = trainClass.colRange(<span>0</span>, <span>1</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span>), Scalar(<span>0.4</span> *<span> WIDTH));
    </span><span>//</span><span> 点的y坐标在[0, 1)之间</span>
    c = trainClass.colRange(<span>1</span>,<span>2</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT));

    </span><span>//</span><span> 生成分类2的随机点</span>
    trainClass = trainData.rowRange(<span>2</span>*NTRAINING_SAMPLES-nLinearSamples, <span>2</span>*<span>NTRAINING_SAMPLES);
    </span><span>//</span><span> 点的x坐标在[0.6, 1]之间</span>
    c = trainClass.colRange(<span>0</span> , <span>1</span><span>); 
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.6</span>*<span>WIDTH), Scalar(WIDTH));
    </span><span>//</span><span> 点的y坐标在[0, 1)之间</span>
    c = trainClass.colRange(<span>1</span>,<span>2</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT));

    </span><span>/*</span><span> 设置非线性可分的训练数据 </span><span>*/</span>

    <span>//</span><span> 生成分类1和分类2的随机点</span>
    trainClass = trainData.rowRange(  nLinearSamples, <span>2</span>*NTRAINING_SAMPLES-<span>nLinearSamples);
    </span><span>//</span><span> 点的x坐标在[0.4, 0.6)之间</span>
    c = trainClass.colRange(<span>0</span>,<span>1</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>0.4</span>*WIDTH), Scalar(<span>0.6</span>*<span>WIDTH)); 
    </span><span>//</span><span> 点的y坐标在[0, 1)之间</span>
    c = trainClass.colRange(<span>1</span>,<span>2</span><span>);
    rng.fill(c, RNG::UNIFORM, Scalar(</span><span>1</span><span>), Scalar(HEIGHT));
    
    </span><span>/*</span><span>*/</span><span>
    labels.rowRange(                </span><span>0</span>,   NTRAINING_SAMPLES).setTo(<span>1</span>);  <span>//</span><span> Class 1</span>
    labels.rowRange(NTRAINING_SAMPLES, <span>2</span>*NTRAINING_SAMPLES).setTo(<span>2</span>);  <span>//</span><span> Class 2</span>

    <span>/*</span><span> 设置支持向量机参数 </span><span>*/</span><span>
    CvSVMParams </span><span>params</span><span>;
    </span><span>params</span>.svm_type    =<span> SVM::C_SVC;
    </span><span>params</span>.C           = <span>0.1</span><span>;
    </span><span>params</span>.kernel_type =<span> SVM::LINEAR;
    </span><span>params</span>.term_crit   = TermCriteria(CV_TERMCRIT_ITER, (<span>int</span>)1e7, 1e-<span>6</span><span>);

    </span><span>/*</span><span> 3. 训练支持向量机 </span><span>*/</span><span>
    cout </span>"<span>Starting training process</span><span>"</span>  endl;
    CvSVM svm;
    svm.train(trainData, labels, Mat(), Mat(), <span>params</span><span>);
    cout </span>"<span>Finished training process</span><span>"</span>  endl;
    
    <span>/*</span><span> 4. 显示划分区域 </span><span>*/</span><span>
    Vec3b green(</span><span>0</span>,<span>100</span>,<span>0</span>), blue (<span>100</span>,<span>0</span>,<span>0</span><span>);
    </span><span>for</span> (<span>int</span> i = <span>0</span>; i i)
        <span>for</span> (<span>int</span> j = <span>0</span>; j j){
            Mat sampleMat = (Mat_float>(<span>1</span>,<span>2</span>)  i, j);
            <span>float</span> response =<span> svm.predict(sampleMat);

            </span><span>if</span>      (response == <span>1</span>)    I.at<vec3b>(j, i)  =<span> green;
            </span><span>else</span> <span>if</span> (response == <span>2</span>)    I.at<vec3b>(j, i)  =<span> blue;
        }

    </span><span>/*</span><span> 5. 显示训练数据 </span><span>*/</span>
    <span>int</span> thick = -<span>1</span><span>;
    </span><span>int</span> lineType = <span>8</span><span>;
    </span><span>float</span><span> px, py;
    </span><span>//</span><span> 分类1</span>
    <span>for</span> (<span>int</span> i = <span>0</span>; i i){
        px = trainData.atfloat>(i,<span>0</span><span>);
        py </span>= trainData.atfloat>(i,<span>1</span><span>);
        circle(I, Point( (</span><span>int</span>) px,  (<span>int</span>) py ), <span>3</span>, Scalar(<span>0</span>, <span>255</span>, <span>0</span><span>), thick, lineType);
    }
    </span><span>//</span><span> 分类2</span>
    <span>for</span> (<span>int</span> i = NTRAINING_SAMPLES; i 2*NTRAINING_SAMPLES; ++<span>i){
        px </span>= trainData.atfloat>(i,<span>0</span><span>);
        py </span>= trainData.atfloat>(i,<span>1</span><span>);
        circle(I, Point( (</span><span>int</span>) px, (<span>int</span>) py ), <span>3</span>, Scalar(<span>255</span>, <span>0</span>, <span>0</span><span>), thick, lineType);
    }

    </span><span>/*</span><span> 6. 显示支持向量 */</span>
    thick = <span>2</span><span>;
    lineType  </span>= <span>8</span><span>;
    </span><span>int</span> x     =<span> svm.get_support_vector_count();

    </span><span>for</span> (<span>int</span> i = <span>0</span>; i i)
    {
        <span>const</span> <span>float</span>* v =<span> svm.get_support_vector(i);
        circle( I,  Point( (</span><span>int</span>) v[<span>0</span>], (<span>int</span>) v[<span>1</span>]), <span>6</span>, Scalar(<span>128</span>, <span>128</span>, <span>128</span><span>), thick, lineType);
    }

    imwrite(</span><span>"</span><span>result.png</span><span>"</span>, I);                      <span>//</span><span> 保存图片</span>
    imshow(<span>"</span><span>SVM线性不可分数据划分</span><span>"</span>, I); <span>//</span><span> 显示给用户</span>
    waitKey(<span>0</span><span>);
}</span></vec3b></vec3b></opencv2></opencv2></opencv2></iostream>

【OpenCV2.4】SVM处理线性不可分的例子

设置SVM参数

这里的参数设置可以参考一下的API。

<span>CvSVMParams</span> <span>params</span><span>;</span>
<span>params</span><span>.</span><span>svm_type</span>    <span>=</span> <span>SVM</span><span>::</span><span>C_SVC</span><span>;</span>
<span>params</span><span>.</span><span>C</span>              <span>=</span> <span>0.1</span><span>;</span>
<span>params</span><span>.</span><span>kernel_type</span> <span>=</span> <span>SVM</span><span>::</span><span>LINEAR</span><span>;</span>
<span>params</span><span>.</span><span>term_crit</span>   <span>=</span> <span>TermCriteria</span><span>(</span><span>CV_TERMCRIT_ITER</span><span>,</span> <span>(</span><span>int</span><span>)</span><span>1e7</span><span>,</span> <span>1e-6</span><span>);</span>

 可以看到,这次使用的是C类支持向量分类机。其参数C的值为0.1。

 结果

  • 程序创建了一张图像,在其中显示了训练样本,其中一个类显示为浅绿色圆圈,另一个类显示为浅蓝色圆圈。
  • 训练得到SVM,并将图像的每一个像素分类。 分类的结果将图像分为蓝绿两部分,中间线就是最优分割超平面。由于样本非线性可分, 自然就有一些被错分类的样本。 一些绿色点被划分到蓝色区域, 一些蓝色点被划分到绿色区域。
  • 最后支持向量通过灰色边框加重显示。

【OpenCV2.4】SVM处理线性不可分的例子

被山寨的原文

Support Vector Machines for Non-Linearly Separable Data . OpenCV.org

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
您可以使用哪些工具來監視MySQL性能?您可以使用哪些工具來監視MySQL性能?Apr 23, 2025 am 12:21 AM

如何有效監控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。 1.使用mysqladmin查看連接數。 2.用SHOWGLOBALSTATUS查看查詢數。 3.PMM提供詳細性能數據和圖形化界面。 4.MySQLEnterpriseMonitor提供豐富的監控功能和報警機制。

MySQL與SQL Server有何不同?MySQL與SQL Server有何不同?Apr 23, 2025 am 12:20 AM

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显著差异,选择时需考虑项目规模和未来扩展性。

在哪些情況下,您可以選擇SQL Server而不是MySQL?在哪些情況下,您可以選擇SQL Server而不是MySQL?Apr 23, 2025 am 12:20 AM

在需要高可用性、高級安全性和良好集成性的企業級應用場景下,應選擇SQLServer而不是MySQL。 1)SQLServer提供企業級功能,如高可用性和高級安全性。 2)它與微軟生態系統如VisualStudio和PowerBI緊密集成。 3)SQLServer在性能優化方面表現出色,支持內存優化表和列存儲索引。

MySQL如何處理角色集和碰撞?MySQL如何處理角色集和碰撞?Apr 23, 2025 am 12:19 AM

mySqlManagesCharacterSetsetSandCollat​​ionsyutusututf-8asthEdeFault,允許ConfigurationAtdataBase,table和columnlevels,AndrequiringCarefullageLignmentToavoidMismatches.1)setDefeaultCharactersetTercharactersetEtCollacterSeteTandColletationForAdataBase.2)conformentcollecharactersettersetertersetcollat​​ertersetcollat​​ioncollat​​ion

MySQL中有什麼觸發器?MySQL中有什麼觸發器?Apr 23, 2025 am 12:11 AM

MySQL觸發器是與表相關聯的自動執行的存儲過程,用於在特定數據操作時執行一系列操作。 1)觸發器定義與作用:用於數據校驗、日誌記錄等。 2)工作原理:分為BEFORE和AFTER,支持行級觸發。 3)使用示例:可用於記錄薪資變更或更新庫存。 4)調試技巧:使用SHOWTRIGGERS和SHOWCREATETRIGGER命令。 5)性能優化:避免複雜操作,使用索引,管理事務。

您如何在MySQL中創建和管理用戶帳戶?您如何在MySQL中創建和管理用戶帳戶?Apr 22, 2025 pm 06:05 PM

在MySQL中創建和管理用戶賬戶的步驟如下:1.創建用戶:使用CREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';2.分配權限:使用GRANTSELECT,INSERT,UPDATEONmydatabase.TO'newuser'@'localhost';3.修正權限錯誤:使用REVOKEALLPRIVILEGESONmydatabase.FROM'newuser'@'localhost';然後重新分配權限;4.優化權限:使用SHOWGRA

MySQL與Oracle有何不同?MySQL與Oracle有何不同?Apr 22, 2025 pm 05:57 PM

MySQL適合快速開發和中小型應用,Oracle適合大型企業和高可用性需求。 1)MySQL開源、易用,適用於Web應用和中小型企業。 2)Oracle功能強大,適合大型企業和政府機構。 3)MySQL支持多種存儲引擎,Oracle提供豐富的企業級功能。

與其他關係數據庫相比,使用MySQL的缺點是什麼?與其他關係數據庫相比,使用MySQL的缺點是什麼?Apr 22, 2025 pm 05:49 PM

MySQL相比其他關係型數據庫的劣勢包括:1.性能問題:在處理大規模數據時可能遇到瓶頸,PostgreSQL在復雜查詢和大數據處理上表現更優。 2.擴展性:水平擴展能力不如GoogleSpanner和AmazonAurora。 3.功能限制:在高級功能上不如PostgreSQL和Oracle,某些功能需要更多自定義代碼和維護。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)