一:图的遍历 1.概念: 从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次(图的遍历算法是求解图的 连通性问题 、 拓扑排序 和求 关键路径 等算法的基
一:图的遍历
1.概念: 从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次(图的遍历算法是求解图的连通性问题、拓扑排序和求关键路径等算法的基础。)
2.深度优先搜索(DFS)
1).基本思想:
(1)在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;(2)再从 w1 出发,访问与 w1邻接但还未被访问过的顶点 w2;
(3)然后再从 w2 出发,进行类似的访问,…
(4)如此进行下去,直至到达所有的邻接顶点都被访问过为止。
(5)接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。
如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;
如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。
2)算法实现(明显是要用到(栈)递归):
Void DFSTraverse( Graph G, Status (*Visit) (int v)) { // 对图G做深度优先遍历 for (v=0; v<g.vexnum visited false for v if dfs void g>//从第v个顶点出发递归地深度优先遍历图G { visited[v]=TRUE ; Visit(v); //访问第v个顶点 for(w=FirstAdjVex(G,v)/*从图的第v个结点开始*/; w>=0; w=NextAdjVex(G,v,w)/*v结点开始的w结点的下一个结点*/) if (!visited[w]) DFS(G,w); //对v的尚未访问的邻接顶点w递归调用DFS } </g.vexnum>
3)DFS时间复杂度分析:
(1)如果用邻接矩阵来表示图,遍历图中每一个顶点都要从头扫描该顶点所在行,因此遍历全部顶点所需的时间为O(n2)。
(2)如果用邻接表来表示图,虽然有 2e 个表结点,但只需扫描 e 个结点即可完成遍历,加上访问 n 个头结点的时间,因此遍历图的时间复杂度为O(n+e)。
3.广度优先搜索(BFS)
1).基本思想:
(1)从图中某个顶点V0出发,并在访问此顶点后依次访问V0的所有未被访问过的邻接点,之后按这些顶点被访问的先后次序依次访问它们的邻接点,直至图中所有和V0 有 路径相通的顶点都被访问到;
(2)若此时图中尚有顶点未被访问(非连通图),则另选图中一个未曾被访问的顶点作起始点;
(3)重复上述过程,直至图中所有顶点都被访问到为止。
2).算法实现(明显是要用到队列)
void BFSTraverse(Graph G, Status (*Visit)(int v)){ //使用辅助队列Q和访问标志数组visited[v] for (v=0; v<g.vexnum visited false initqueue for v="0;" if true visit enqueue while dequeue u>=0;w=NextAdjVex(G,u,w)) if ( ! visited[w]){ //w为u的尚未访问的邻接顶点 visited[w] = TRUE; Visit(w); EnQueue(Q, w); } //if } //while }if } // BFSTraverse</g.vexnum>3).BFS时间复杂度分析:
(1) 如果使用邻接表来表示图,则BFS循环的总时间代价为 d0 + d1 + … + dn-1 = 2e=O(e),其中的 di 是顶点 i 的度
(2)如果使用邻接矩阵,则BFS对于每一个被访问到的顶点,都要循环检测矩阵中的整整一行( n 个元素),总的时间代价为O(n2)。
二.图的连通性问题:
1. 相关术语:
(1)连通分量的顶点集:即从该连通分量的某一顶点出发进行搜索所得到的顶点访问序列;
(2)生成树:某连通分量的极小连通子图(深度优先搜索生成树和广度优先搜索生成树);
(3)生成森林:非连通图的各个连通分量的极小连通子图构成的集合。
2.最小生成树:
1).Kruskal算法:
先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中去,并使森林中不产生回路,直至森林变成一棵树为止(详细代码见尾文)。
2)Prim算法(还是看上图理解):
假设原来所有节点集合为V,生成的最小生成树的结点集合为U,则首先把起始点V1加入到U中,然后看比较V1的所有相邻边,选择一条最小的V3结点加入到集合U中,
然后看剩下的v-U结点与U中结点的距离,同样选择最小的.........一直进行下去直到边数=n-1即可。
算法设计思路:
增设一辅助数组Closedge[ n ],每个数组分量都有两个域:
要求:求最小的Colsedge[ i ].lowcost
3.两种算法比较:
(1)普里姆算法的时间复杂度为 O(n2),与网中的边数无关,适于稠密图;
(2)克鲁斯卡尔算法需对 e 条边按权值进行排序,其时间复杂度为 O(eloge),e为网中的边数,适于稀疏图。
4.完整最小生成树两种算法实现:
#include<stdio.h> #include<stdlib.h> #include<iostream> using namespace std; #define MAX_VERTEX_NUM 20 #define OK 1 #define ERROR 0 #define MAX 1000 typedef struct Arcell { double adj;//顶点类型 }Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct { char vexs[MAX_VERTEX_NUM]; //节点数组, AdjMatrix arcs; //邻接矩阵 int vexnum,arcnum; //图的当前节点数和弧数 }MGraph; typedef struct Pnode //用于普利姆算法 { char adjvex; //节点 double lowcost; //权值 }Pnode,Closedge[MAX_VERTEX_NUM]; //记录顶点集U到V-U的代价最小的边的辅助数组定义 typedef struct Knode //用于克鲁斯卡尔算法中存储一条边及其对应的2个节点 { char ch1; //节点1 char ch2; //节点2 double value;//权值 }Knode,Dgevalue[MAX_VERTEX_NUM]; //----------------------------------------------------------------------------------- int CreateUDG(MGraph & G,Dgevalue & dgevalue); int LocateVex(MGraph G,char ch); int Minimum(MGraph G,Closedge closedge); void MiniSpanTree_PRIM(MGraph G,char u); void Sortdge(Dgevalue & dgevalue,MGraph G); //----------------------------------------------------------------------------------- int CreateUDG(MGraph & G,Dgevalue & dgevalue) //构造无向加权图的邻接矩阵 { int i,j,k; cout>G.vexnum>>G.arcnum; cout>G.vexs[i]; for(i=0;i<g.vexnum for g.arcs cout cin>> dgevalue[k].ch1 >> dgevalue[k].ch2 >> dgevalue[k].value; i = LocateVex(G,dgevalue[k].ch1); j = LocateVex(G,dgevalue[k].ch2); G.arcs[i][j].adj = dgevalue[k].value; G.arcs[j][i].adj = G.arcs[i][j].adj; } return OK; } int LocateVex(MGraph G,char ch) //确定节点ch在图G.vexs中的位置 { int a ; for(int i=0; i<g.vexnum i if ch a="i;" return void minispantree_prim g u int closedge k="LocateVex(G,u);" for j g.arcs cout g.vexs minimum double minispantree_krsl dgevalue p1 bj sortdge p2="bj[LocateVex(G,dgevalue[i].ch2)];" temp char ch1> dgevalue[j].value) { temp = dgevalue[i].value; dgevalue[i].value = dgevalue[j].value; dgevalue[j].value = temp; ch1 = dgevalue[i].ch1; dgevalue[i].ch1 = dgevalue[j].ch1; dgevalue[j].ch1 = ch1; ch2 = dgevalue[i].ch2; dgevalue[i].ch2 = dgevalue[j].ch2; dgevalue[j].ch2 = ch2; } } } } void main() { int i,j; MGraph G; char u; Dgevalue dgevalue; CreateUDG(G,dgevalue); cout>u; cout运行结果: <p> <img src="/static/imghwm/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20140219123300296%3Fwatermark%2F2%2Ftext%2FaHR0cDovL2Jsb2cuY3Nkbi5uZXQvd3VzdF9fd2FuZ2Zhbg%3D%3D%2Ffont%2F5a6L5L2T%2Ffontsize%2F400%2Ffill%2FI0JBQkFCMA%3D%3D%2Fdissolve%2F70%2Fgravity%2FSouthEast&refer=http%3A%2F%2Fblog.csdn.net%2Fwust__wangfan%2Farticle%2Fdetails%2F19479007" class="lazy" alt="图(2)" ></p> </g.vexnum></g.vexnum></iostream></stdlib.h></stdio.h>

InnoDB使用redologs和undologs確保數據一致性和可靠性。 1.redologs記錄數據頁修改,確保崩潰恢復和事務持久性。 2.undologs記錄數據原始值,支持事務回滾和MVCC。

EXPLAIN命令的關鍵指標包括type、key、rows和Extra。 1)type反映查詢的訪問類型,值越高效率越高,如const優於ALL。 2)key顯示使用的索引,NULL表示無索引。 3)rows預估掃描行數,影響查詢性能。 4)Extra提供額外信息,如Usingfilesort提示需要優化。

Usingtemporary在MySQL查詢中表示需要創建臨時表,常見於使用DISTINCT、GROUPBY或非索引列的ORDERBY。可以通過優化索引和重寫查詢避免其出現,提升查詢性能。具體來說,Usingtemporary出現在EXPLAIN輸出中時,意味著MySQL需要創建臨時表來處理查詢。這通常發生在以下情況:1)使用DISTINCT或GROUPBY時進行去重或分組;2)ORDERBY包含非索引列時進行排序;3)使用複雜的子查詢或聯接操作。優化方法包括:1)為ORDERBY和GROUPB

MySQL/InnoDB支持四種事務隔離級別:ReadUncommitted、ReadCommitted、RepeatableRead和Serializable。 1.ReadUncommitted允許讀取未提交數據,可能導致臟讀。 2.ReadCommitted避免臟讀,但可能發生不可重複讀。 3.RepeatableRead是默認級別,避免臟讀和不可重複讀,但可能發生幻讀。 4.Serializable避免所有並發問題,但降低並發性。選擇合適的隔離級別需平衡數據一致性和性能需求。

MySQL適合Web應用和內容管理系統,因其開源、高性能和易用性而受歡迎。 1)與PostgreSQL相比,MySQL在簡單查詢和高並發讀操作上表現更好。 2)相較Oracle,MySQL因開源和低成本更受中小企業青睞。 3)對比MicrosoftSQLServer,MySQL更適合跨平台應用。 4)與MongoDB不同,MySQL更適用於結構化數據和事務處理。

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL學習路徑包括基礎知識、核心概念、使用示例和優化技巧。 1)了解表、行、列、SQL查詢等基礎概念。 2)學習MySQL的定義、工作原理和優勢。 3)掌握基本CRUD操作和高級用法,如索引和存儲過程。 4)熟悉常見錯誤調試和性能優化建議,如合理使用索引和優化查詢。通過這些步驟,你將全面掌握MySQL的使用和優化。

MySQL在現實世界的應用包括基礎數據庫設計和復雜查詢優化。 1)基本用法:用於存儲和管理用戶數據,如插入、查詢、更新和刪除用戶信息。 2)高級用法:處理複雜業務邏輯,如電子商務平台的訂單和庫存管理。 3)性能優化:通過合理使用索引、分區表和查詢緩存來提升性能。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版

Dreamweaver CS6
視覺化網頁開發工具

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中