Scale - up (纵向扩展)和 Scale -out (横向扩展)的解释 谈到系统的可伸缩性, Scale - up (纵向扩展)和 Scale -out (横向扩展)是两个常见的术语,对于初学者来说,很容易搞迷糊这两个概念,这里总结了一些把概念解释的比较清楚的内容。 首先来段Wiki
Scale-up(纵向扩展)和Scale-out(横向扩展)的解释
谈到系统的可伸缩性,Scale-up(纵向扩展)和Scale-out(横向扩展)是两个常见的术语,对于初学者来说,很容易搞迷糊这两个概念,这里总结了一些把概念解释的比较清楚的内容。
首先来段Wikipedia的,讲的很透彻了。
Scale vertically (scale up)
To scale vertically (or scale up) means to add resources to a single node in a system, typically involving the addition of CPUs or memory to a single computer. Such vertical scaling of existing systems also enables them to leverage Virtualization technology more effectively, as it provides more resources for the hosted set of Operating system and Application modules to share.
Taking advantage of such resources can also be called “scaling up”, such as expanding the number of Apache daemon processes currently running.
Scale horizontally (scale out)
To scale horizontally (or scale out) means to add more nodes to a system, such as adding a new computer to a distributed software application. An example might be scaling out from one web server system to three.
As computer prices drop and performance continues to increase, low cost “commodity” systems can be used for high performance computing applications such as seismic analysis and biotechnology workloads that could in the past only be handled by supercomputers. Hundreds of small computers may be configured in a cluster to obtain aggregate computing power which often exceeds that of single traditional RISC processor based scientific computers. This model has further been fueled by the availability of high performance interconnects such as Myrinet and InfiniBand technologies. It has also led to demand for features such as remote maintenance and batch processing management previously not available for “commodity” systems.
The scale-out model has created an increased demand for shared data storage with very high I/O performance, especially where processing of large amounts of data is required, such as in seismic analysis. This has fueled the development of new storage technologies such as object storage devices.
Scale vertically (scale up)
To scale vertically (or scale up) means to add resources to a single node in a system, typically involving the addition of CPUs or memory to a single computer. Such vertical scaling of existing systems also enables them to leverage Virtualization technology more effectively, as it provides more resources for the hosted set of Operating system and Application modules to share.
Taking advantage of such resources can also be called “scaling up”, such as expanding the number of Apache daemon processes currently running.
Scale horizontally (scale out)
To scale horizontally (or scale out) means to add more nodes to a system, such as adding a new computer to a distributed software application. An example might be scaling out from one web server system to three.
As computer prices drop and performance continues to increase, low cost “commodity” systems can be used for high performance computing applications such as seismic analysis and biotechnology workloads that could in the past only be handled by supercomputers. Hundreds of small computers may be configured in a cluster to obtain aggregate computing power which often exceeds that of single traditional RISC processor based scientific computers. This model has further been fueled by the availability of high performance interconnects such as Myrinet and InfiniBand technologies. It has also led to demand for features such as remote maintenance and batch processing management previously not available for “commodity” systems.
The scale-out model has created an increased demand for shared data storage with very high I/O performance, especially where processing of large amounts of data is required, such as in seismic analysis. This has fueled the development of new storage technologies such as object storage devices.
------------------------------华丽的分割线---------------------------------------
英语不好?没关系,给你准备了一份中文的,来自这里,他用养鱼来做了个形象的比喻。
当你只有六七条鱼的时候, 一个小型鱼缸就够了;可是过一段时间新生了三十多条小鱼,这个小缸显然不够大了。
如果用Scale-up解决方案,那么你就需要去买一个大缸,把所有沙啊、水草啊、布景啊、加热棒、温度计都从小缸里拿出来,重新布置到大缸。这个工程可不简单哦,不是十分钟八分钟能搞得定的,尤其水草,纠在一起很难分开(不过这 跟迁移数据的工程复杂度比起来实在是毛毛雨啦,不值一提)。
那么现在换个思路,用Scale-out方案,就相当于是你在这个小缸旁边接了一个同样的小缸,两个缸联通。鱼可以自动分散到两个缸,你也就省掉了上面提到的那一系列挪沙、水草、布景等的折腾了。

在數據庫優化中,應根據查詢需求選擇索引策略:1.當查詢涉及多個列且條件順序固定時,使用複合索引;2.當查詢涉及多個列但條件順序不固定時,使用多個單列索引。複合索引適用於優化多列查詢,單列索引則適合單列查詢。

要優化MySQL慢查詢,需使用slowquerylog和performance_schema:1.啟用slowquerylog並設置閾值,記錄慢查詢;2.利用performance_schema分析查詢執行細節,找出性能瓶頸並優化。

MySQL和SQL是開發者必備技能。 1.MySQL是開源的關係型數據庫管理系統,SQL是用於管理和操作數據庫的標準語言。 2.MySQL通過高效的數據存儲和檢索功能支持多種存儲引擎,SQL通過簡單語句完成複雜數據操作。 3.使用示例包括基本查詢和高級查詢,如按條件過濾和排序。 4.常見錯誤包括語法錯誤和性能問題,可通過檢查SQL語句和使用EXPLAIN命令優化。 5.性能優化技巧包括使用索引、避免全表掃描、優化JOIN操作和提升代碼可讀性。

MySQL異步主從復制通過binlog實現數據同步,提升讀性能和高可用性。 1)主服務器記錄變更到binlog;2)從服務器通過I/O線程讀取binlog;3)從服務器的SQL線程應用binlog同步數據。

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

MySQL的安裝和基本操作包括:1.下載並安裝MySQL,設置根用戶密碼;2.使用SQL命令創建數據庫和表,如CREATEDATABASE和CREATETABLE;3.執行CRUD操作,使用INSERT,SELECT,UPDATE,DELETE命令;4.創建索引和存儲過程以優化性能和實現複雜邏輯。通過這些步驟,你可以從零開始構建和管理MySQL數據庫。

InnoDBBufferPool通過將數據和索引頁加載到內存中來提升MySQL數據庫的性能。 1)數據頁加載到BufferPool中,減少磁盤I/O。 2)臟頁被標記並定期刷新到磁盤。 3)LRU算法管理數據頁淘汰。 4)預讀機制提前加載可能需要的數據頁。

MySQL適合初學者使用,因為它安裝簡單、功能強大且易於管理數據。 1.安裝和配置簡單,適用於多種操作系統。 2.支持基本操作如創建數據庫和表、插入、查詢、更新和刪除數據。 3.提供高級功能如JOIN操作和子查詢。 4.可以通過索引、查詢優化和分錶分區來提升性能。 5.支持備份、恢復和安全措施,確保數據的安全和一致性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

Atom編輯器mac版下載
最受歡迎的的開源編輯器

Dreamweaver CS6
視覺化網頁開發工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能