Kernel setup To run the pure basics of iptables you need to configure the following options into the kernel while doing make config or one of its related commands: CONFIG_PACKET - This option allows applications and utilities that need to
Kernel setup
To run the pure basics of iptables you need to configure the following options into the kernel while doing make config or one of its related commands:
CONFIG_PACKET - This option allows applications and utilities that need to work directly with various network devices. Examples of such utilities are tcpdump or snort.
![]() |
CONFIG_PACKET is strictly speaking not needed for iptables to work, but since it contains so many uses, I have chosen to include it here. If you do not want it, don't include it. |
CONFIG_NETFILTER - This option is required if you're going to use your computer as a firewall or gateway to the Internet. In other words, this is most definitely required for anything in this tutorial to work at all. I assume you will want this, since you are reading this.
And of course you need to add the proper drivers for your interfaces to work properly, i.e. Ethernet adapter, PPP and SLIP interfaces. The above will only add some of the pure basics in iptables. You won't be able to do anything productive to be honest, it just adds the framework to the kernel. If you want to use the more advanced options in Iptables, you need to set up the proper configuration options in your kernel. Here we will show you the options available in a basic 2.4.9 kernel and a brief explanation:
CONFIG_IP_NF_CONNTRACK - This module is needed to make connection tracking. Connection tracking is used by, among other things, NAT and Masquerading. If you need to firewall machines on a LAN you most definitely should mark this option. For example, this module is required by the rc.firewall.txt script to work.
CONFIG_IP_NF_FTP - This module is required if you want to do connection tracking on FTP connections. Since FTP connections are quite hard to do connection tracking on in normal cases, conntrack needs a so called helper; this option compiles the helper. If you do not add this module you won't be able to FTP through a firewall or gateway properly.
CONFIG_IP_NF_IPTABLES - This option is required if you want do any kind of filtering, masquerading or NAT. It adds the whole iptables identification framework to the kernel. Without this you won't be able to do anything at all with iptables.
CONFIG_IP_NF_MATCH_LIMIT - This module isn't exactly required but it's used in the example rc.firewall.txt. This option provides the LIMIT match, that adds the possibility to control how many packets per minute that are to be matched, governed by an appropriate rule. For example, -m limit --limit 3/minute would match a maximum of 3 packets per minute. This module can also be used to avoid certain Denial of Service attacks.
CONFIG_IP_NF_MATCH_MAC - This allows us to match packets based on MAC addresses. Every Ethernet adapter has its own MAC address. We could for instance block packets based on what MAC address is used and block a certain computer pretty well since the MAC address very seldom changes. We don't use this option in the rc.firewall.txt example or anywhere else.
CONFIG_IP_NF_MATCH_MARK - This allows us to use a MARK match. For example, if we use the target MARK we could mark a packet and then depending on if this packet is marked further on in the table, we can match based on this mark. This option is the actual match MARK, and further down we will describe the actual target MARK.
CONFIG_IP_NF_MATCH_MULTIPORT - This module allows us to match packets with a whole range of destination ports or source ports. Normally this wouldn't be possible, but with this match it is.
CONFIG_IP_NF_MATCH_TOS - With this match we can match packets based on their TOS field. TOS stands for Type Of Service. TOS can also be set by certain rules in the mangle table and via the ip/tc commands.
CONFIG_IP_NF_MATCH_TCPMSS - This option adds the possibility for us to match TCP packets based on their MSS field.
CONFIG_IP_NF_MATCH_STATE - This is one of the biggest news in comparison to ipchains. With this module we can do stateful matching on packets. For example, if we have already seen traffic in two directions in a TCP connection, this packet will be counted as ESTABLISHED. This module is used extensively in the rc.firewall.txt example.
CONFIG_IP_NF_MATCH_UNCLEAN - This module will add the possibility for us to match IP, TCP, UDP and ICMP packets that don't conform to type or are invalid. We could for example drop these packets, but we never know if they are legitimate or not. Note that this match is still experimental and might not work perfectly in all cases.
CONFIG_IP_NF_MATCH_OWNER - This option will add the possibility for us to do matching based on the owner of a socket. For example, we can allow only the user root to have Internet access. This module was originally just written as an example on what could be done with the new iptables. Note that this match is still experimental and might not work for everyone.
CONFIG_IP_NF_FILTER - This module will add the basic filter table which will enable you to do IP filtering at all. In the filter table you'll find the INPUT, FORWARD and OUTPUT chains. This module is required if you plan to do any kind of filtering on packets that you receive and send.
CONFIG_IP_NF_TARGET_REJECT - This target allows us to specify that an ICMP error message should be sent in reply to incoming packets, instead of plainly dropping them dead to the floor. Keep in mind that TCP connections, as opposed to ICMP and UDP, are always reset or refused with a TCP RST packet.
CONFIG_IP_NF_TARGET_MIRROR - This allows packets to be bounced back to the sender of the packet. For example, if we set up a MIRROR target on destination port HTTP on our INPUT chain and someone tries to access this port, we would bounce his packets back to him and finally he would probably see his own homepage.
![]() |
The MIRROR target is not to be used lightly. It was originally built as a test and example module, and will most probably be very dangerous to the person setting it up (resulting in serious DDoS if among other things). |
CONFIG_IP_NF_NAT - This module allows network address translation, or NAT, in its different forms. This option gives us access to the nat table in iptables. This option is required if we want to do port forwarding, masquerading, etc. Note that this option is not required for firewalling and masquerading of a LAN, but you should have it present unless you are able to provide unique IP addresses for all hosts. Hence, this option is required for the example rc.firewall.txt script to work properly, and most definitely on your network if you do not have the ability to add unique IP addresses as specified above.
CONFIG_IP_NF_TARGET_MASQUERADE - This module adds the MASQUERADE target. For instance if we don't know what IP we have to the Internet this would be the preferred way of getting the IP instead of using DNAT or SNAT. In other words, if we use DHCP, PPP, SLIP or some other connection that assigns us an IP, we need to use this target instead of SNAT. Masquerading gives a slightly higher load on the computer than NAT, but will work without us knowing the IP address in advance.
CONFIG_IP_NF_TARGET_REDIRECT - This target is useful together with application proxies, for example. Instead of letting a packet pass right through, we remap them to go to our local box instead. In other words, we have the possibility to make a transparent proxy this way.
CONFIG_IP_NF_TARGET_LOG - This adds the LOG target and its functionality to iptables. We can use this module to log certain packets to syslogd and hence see what is happening to the packet. This is invaluable for security audits, forensics or debugging a script you are writing.
CONFIG_IP_NF_TARGET_TCPMSS - This option can be used to counter Internet Service Providers and servers who block ICMP Fragmentation Needed packets. This can result in web-pages not getting through, small mails getting through while larger mails don't, ssh works but scp dies after handshake, etc. We can then use the TCPMSS target to overcome this by clamping our MSS (Maximum Segment Size) to the PMTU (Path Maximum Transmit Unit).
CONFIG_IP_NF_COMPAT_IPCHAINS - Adds a compatibility mode with the obsolete ipchains. Do not look to this as any real long term solution for solving migration from Linux 2.2 kernels to 2.4 kernels, since it may well be gone with kernel 2.6.
CONFIG_IP_NF_COMPAT_IPFWADM - Compatibility mode with obsolescent ipfwadm. Definitely don't look to this as a real long term solution.
As you can see, there is a heap of options. I have briefly explained here what kind of extra behaviors you can expect from each module. These are only the options available in a vanilla Linux 2.4.9 kernel. If you would like to take a look at more options, I suggest you look at the patch-o-matic (POM) functions in Netfilter user-land which will add heaps of other options in the kernel. POM fixes are additions that are supposed to be added in the kernel in the future but have not quite reached the kernel yet. This may be for various reasons - such as the patch not being stable yet, to Linus Torvalds being unable to keep up, or not wanting to let the patch in to the mainstream kernel yet since it is still experimental.
You will need the following options compiled into your kernel, or as modules, for the rc.firewall.txt script to work. If you need help with the options that the other scripts need, look at the example firewall scripts div.
-
CONFIG_PACKET
-
CONFIG_NETFILTER
-
CONFIG_IP_NF_CONNTRACK
-
CONFIG_IP_NF_FTP
-
CONFIG_IP_NF_IRC
-
CONFIG_IP_NF_IPTABLES
-
CONFIG_IP_NF_FILTER
-
CONFIG_IP_NF_NAT
-
CONFIG_IP_NF_MATCH_STATE
-
CONFIG_IP_NF_TARGET_LOG
-
CONFIG_IP_NF_MATCH_LIMIT
-
CONFIG_IP_NF_TARGET_MASQUERADE
At the very least the above will be required for the rc.firewall.txt script. In the other example scripts I will explain what requirements they have in their respective divs. For now, let's try to stay focused on the main script which you should be studying now.

MySQL適合初學者學習數據庫技能。 1.安裝MySQL服務器和客戶端工具。 2.理解基本SQL查詢,如SELECT。 3.掌握數據操作:創建表、插入、更新、刪除數據。 4.學習高級技巧:子查詢和窗口函數。 5.調試和優化:檢查語法、使用索引、避免SELECT*,並使用LIMIT。

MySQL通過表結構和SQL查詢高效管理結構化數據,並通過外鍵實現表間關係。 1.創建表時定義數據格式和類型。 2.使用外鍵建立表間關係。 3.通過索引和查詢優化提高性能。 4.定期備份和監控數據庫確保數據安全和性能優化。

MySQL是一個開源的關係型數據庫管理系統,廣泛應用於Web開發。它的關鍵特性包括:1.支持多種存儲引擎,如InnoDB和MyISAM,適用於不同場景;2.提供主從復制功能,利於負載均衡和數據備份;3.通過查詢優化和索引使用提高查詢效率。

SQL用於與MySQL數據庫交互,實現數據的增、刪、改、查及數據庫設計。 1)SQL通過SELECT、INSERT、UPDATE、DELETE語句進行數據操作;2)使用CREATE、ALTER、DROP語句進行數據庫設計和管理;3)複雜查詢和數據分析通過SQL實現,提升業務決策效率。

MySQL的基本操作包括創建數據庫、表格,及使用SQL進行數據的CRUD操作。 1.創建數據庫:CREATEDATABASEmy_first_db;2.創建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入數據:INSERTINTObooks(title,author,published_year)VA

MySQL在Web應用中的主要作用是存儲和管理數據。 1.MySQL高效處理用戶信息、產品目錄和交易記錄等數據。 2.通過SQL查詢,開發者能從數據庫提取信息生成動態內容。 3.MySQL基於客戶端-服務器模型工作,確保查詢速度可接受。

構建MySQL數據庫的步驟包括:1.創建數據庫和表,2.插入數據,3.進行查詢。首先,使用CREATEDATABASE和CREATETABLE語句創建數據庫和表,然後用INSERTINTO語句插入數據,最後用SELECT語句查詢數據。

MySQL適合初學者,因為它易用且功能強大。 1.MySQL是關係型數據庫,使用SQL進行CRUD操作。 2.安裝簡單,需配置root用戶密碼。 3.使用INSERT、UPDATE、DELETE、SELECT進行數據操作。 4.複雜查詢可使用ORDERBY、WHERE和JOIN。 5.調試需檢查語法,使用EXPLAIN分析查詢。 6.優化建議包括使用索引、選擇合適數據類型和良好編程習慣。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

記事本++7.3.1
好用且免費的程式碼編輯器

WebStorm Mac版
好用的JavaScript開發工具

Dreamweaver Mac版
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)