搜尋
首頁資料庫mysql教程大数据量的处理

大数据量的处理

Jun 07, 2016 pm 03:29 PM
具體處理數據監測問題

最近做的项目中涉及到大数据量的问题,具体问题是:监测数字电视的信号,对传输的码流进行指标监测,每秒监测到20000个流,每个流对应着20多个指标,每秒存储一次将这20000流存储起来,需要保存24小时的数据。 这个问题研究了好几天: 一、文件写入存储:但

最近做的项目中涉及到大数据量的问题,具体问题是:监测数字电视的信号,对传输的码流进行指标监测,每秒监测到20000个流,每个流对应着20多个指标,每秒存储一次将这20000流存储起来,需要保存24小时的数据。

这个问题研究了好几天:

一、文件写入存储:但是如果将一天的17亿条记录都写入到一个文件里,没试过,相信会很慢,而且查询的时候会更慢。如果写入到多个文件,按照流ID可以将数据拆成20000个分类,同时对20000个文件执行写入操作也不现实。

二、数据库存储:文件存储的方式pass掉了之后开始考虑数据库存储

1、首先我用的Oracle进行性能测试:

将表按照流ID进列表分区,分为20000个区,然后每个分区内存储86400条数据(也就是该流从一天的第1秒到86400秒对应的指标数据),需要有索引,主键是全局索引,其余的列我又建了4个分区索引。

第一步创建6个表空间,保证每个表空间都能拓展到32GB大小(Oracle的表空间最大能拓展到32GB)

第二步要创建这个分区表:

-- Create table
create table AAA
(
  ID             number(8),
  StreamID       number(8),
  StreamType     number(1),
  FAvailability  number(5),
  Bandwidth      number(4),
  ValidBandwidth number(4),
  MDI_DF         number(5),
  MDI_MLR        number(5),
  Delay_Time     number(5),
  IPInterval     number(5),
  IPJitter       number(5),
  Time           date,
  MLT15          number(5),
  MLT24          number(5),
  MLS            number(5),
  SliceNum       number(5),
  CachedTime     number(5),
  StuckTime      number(5),
  GetSliceErr    number(5),
  RetransmitRate number(5),
  RepeatRate     number(5),
  SecondsFlag    number(5)
)
partition by list(SecondsFlag)  
(  
   partition p1 values(1) tablespace tbs_haicheng 
  
);  
第三步再为t_stream表创建19999个分区:
DECLARE
parName varchar2(100);
sql_str varchar2(500);
BEGIN
  FOR  I  IN 2..20000 LOOP
    parName:='p'||I;
    sql_str:='ALTER TABLE aaa ADD partition'||' p'||I|| ' VALUES('||I||')';
    execute immediate sql_str;
    END LOOP;
  END; 

第四步为t_stream创建4个分区索引:
-- Create/Recreate indexes 
create index LOCAL_INDEX_REPEATRATE on AAA (REPEATRATE);
create index LOCAL_INDEX_SECONDSFLAG on AAA (SECONDSFLAG);
create index LOCAL_INDEX_STREAM on AAA (STREAMID);
create index LOCAL_INDEX_TIME on AAA (TIME);

第五步创建一个表结构与t_stream相似的表:

create table a
(
  ID             number(8),
  StreamID       number(8),
  StreamType     number(1),
  FAvailability  number(5),
  Bandwidth      number(4),
  ValidBandwidth number(4),
  MDI_DF         number(5),
  MDI_MLR        number(5),
  Delay_Time     number(5),
  IPInterval     number(5),
  IPJitter       number(5),
  Time           date,
  MLT15          number(5),
  MLT24          number(5),
  MLS            number(5),
  SliceNum       number(5),
  CachedTime     number(5),
  StuckTime      number(5),
  GetSliceErr    number(5),
  RetransmitRate number(5),
  RepeatRate     number(5),
  SecondsFlag    number(5)
)
partition by list (SECONDSFLAG)
(
  partition P1 values (1)
    tablespace IPVIEW1
    pctfree 10
    initrans 1
    maxtrans 255
    storage
    (
      initial 64K
      minextents 1
      maxextents unlimited
    )
);
alter table AAA
  add constraint ID primary key (ID)
  using index 
  tablespace TBS_HAICHENG
  pctfree 10
  initrans 2
  maxtrans 255
  storage
  (
    initial 64K
    minextents 1
    maxextents unlimited
  );

第六步向表A中插入86400条数据:
declare
begin
  for i in 1..86400 loop
  insert into a
  (id, streamid, streamtype, favailability, bandwidth, validbandwidth, mdi_df, mdi_mlr, delay_time, ipinterval, ipjitter, time, mlt15, mlt24, mls, slicenum, cachedtime, stucktime, getsliceerr, retransmitrate, repeatrate)
values
  (seq_aaa.nextval, 111, 1, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, SYSDATE, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111); 
  end loop;
  end ;

第七步:向t_stream表中copy数据
declare
begin
  FOR I IN 1..20000 LOOP
  insert into aaa
         select seq_aaa.nextval, streamid, streamtype, favailability, bandwidth, validbandwidth, mdi_df, mdi_mlr, delay_time, ipinterval, ipjitter, time, mlt15, mlt24, mls, slicenum, cachedtime, stucktime, getsliceerr, retransmitrate, repeatrate,I from a;
    commit;
    END LOOP;
  end;

注意:实际上,这一部分我是将1-20000分成20份 ,开了20个线程同时执行,每个线程负责向1000个分区中copy数据(向每个分区录入86400条),这时候明白我为什么要创建表A了吧!

然后,就不管他了,玩游戏看电影去了,两天假结束,想起来去看了一眼插入到什么程度了,发现磁盘有的线程还在执行,有的线程由于表空间写满到32Gb无法再拓展而终止了。

看了一下序列已经被调用到6亿多,说明插入进去了6亿多条是数据。

首先是数据占用的空间问题,与估算的相差太多,我开始插入了上百万的数据,通过查看这上百万数据占用的空间估算出17亿数据占用的空间在180G左右,,而我准备出将近200G的磁盘空间以为足够了呢,结果差了这么多,分析下原因,最主要的一点是索引占用的空间:

我原来在预估的时候忘记了为表创建索引,以为没什么大影响,有10G空间足够索引占用了,可是事实大错特错了,通过下面的语句查看了下空间的占用情况:

1、表占用空间(0.008G   这是A表里的86400条数据占用的空间)
select segment_name, sum(bytes)/1024/1024/1024 GB from user_segments where segment_type='TABLE'  group by segment_name;
2、索引占用空间(17.24GB)
select segment_name ,sum(bytes)/1024/1024/1024 GB from user_segments where segment_type IN('INDEX PARTITION','INDEX') group by segment_name;
3、分区表TABLE PARTITION占用空间(63.5GB)
select segment_name,sum(bytes)/1024/1024/1024 GB from user_segments where segment_type='TABLE PARTITION' group by segment_name;
结果分别如下:

 

\
 

\

\

注:第三个图中的SEGMENT_NAME的值为T_STREAM 是上文创建的那个分区表。

我们看到结果发现,实际上表数据占用的空间是64GB,跟原来估算的几乎一致,多出来的部分是被索引占了,总共占用了将近100GB的空间,吓死哥了尴尬

缘何索引占用了这么多的空间?可能是我创建索引的方式不对?后续研究补充!

我们的程序采用的策略是首先将17亿条记录手动录入到数据库中,然后当监测到流指标时候对响应的数据进行update操作,也就是一般每秒执行20000个update语句,测试下性能:

 

declare
j  number ;
begin
  for i in 2000000..2020000 loop
update t_stream
   set 
       streamid = 2,
       streamtype = 2,
       favailability = 2,
       bandwidth = 2,
       validbandwidth = 2,
       mdi_df = 2,
       mdi_mlr = 2,
       delay_time = 2,
       ipinterval = 2,
       ipjitter = 2,
       time = sysdate,
       mlt15 = 2,
       mlt24 = 2,
       mls = 2,
       slicenum = 2,
       cachedtime = 2,
       stucktime = 2,
       getsliceerr = 2,
       retransmitrate = 2,
       repeatrate = 2
        where  id = i ;
  end loop;
  end ;

这种单纯以主键进行修改的时候他要进行全表扫描(所有的分区需要扫描到),效率很低,大约70s执行完,这才只是6亿数据。

所以我们要让他在执行update语句的时候尽量扫描单个分区,也就是说把那个分区字段当参数传递过来,如下语句所示:

declare
j  number ;
begin
  j:=1;
  for i in 2000000..2020000 loop
update aaa
   set 
       streamid = 2,
       streamtype = 2,
       favailability = 2,
       bandwidth = 2,
       validbandwidth = 2,
       mdi_df = 2,
       mdi_mlr = 2,
       delay_time = 2,
       ipinterval = 2,
       ipjitter = 2,
       time = sysdate,
       mlt15 = 2,
       mlt24 = 2,
       mls = 2,
       slicenum = 2,
       cachedtime = 2,
       stucktime = 2,
       getsliceerr = 2,
       retransmitrate = 2,
       repeatrate = 2
        where  id = i ;
        j:=j+1;
  end loop;
  end ;

测试这个代码块执行时间为3s,而且虽然现在是6亿数据,但是就是17亿数据执行时间也差不多是3s的,因为它扫描的永远只是20000个分区。而且我的电脑才四核处理器,服务器上24核呢。执行的肯定会比我电脑快多了吧,所以实现预定需求不成问题。

2、后来由于Oracle是收费的,不让用了,汗一个,接下来研究Mysql。

Mysql在建表以及分区的时候遇到两个问题:

问题一:建分区的时候总提示语法错误,无论怎么改都不让我创建分区,Mysql这么火的数据库不可能不支持分区啊。后来一查才知道Mysq5.0版本不支持分区,是从5.1才开始支持表的分区的尴尬,于是把我的数据库版本更换成5.5的,分区成功创建。

问题二:在Mysql上建20000个分区的过程中发现每次执行到中途就报错停止了,查询了解到Mysql的表分区数量是有限制的,每个表最多能有1024个分区。

这对我们影响不太大,大不了我就建1000个分区,每个分区存放86400*20条数据,相信每个分区百万条数据不算什么。

3、首先sqlite数据库不支持分区只好建立20000个表,由于sqlite不支持存储过程,我也没找到sqlite怎样写循环语句。但是建立20000个表 和 录入那么多的数据我们不可能一条一条的去执行写语句执行,所以需要另想办法,我的解决过程:

首先我想到可以用调用批处理文件的方式插入数据和建表:

建一个 批量建表.bat文件,文件内容如下:

@ECHO OFF 
For /L %%i in (1,1,20000) do (sqlite3.exe hc.db<createTable.bat bbb_%%i) 
pause 

createTable.bat 内容如下:

create table 1%(ID integer primary key autoincrement,
  STREAMID       NUMBER(10),
  STREAMTYPE     NUMBER(1),
  FAVAILABILITY  NUMBER(5),
  BANDWIDTH      NUMBER(4),
  VALIDBANDWIDTH NUMBER(4),
  MDIDF          NUMBER(5),
  MDIMLR         NUMBER(5),
  DELAY_TIME     NUMBER(5),
  IPINTERVAL     NUMBER(5),
  IPJITTER       NUMBER(5),
  TIME           DATE,
  MLT15          NUMBER(5),
  MLT24          NUMBER(5),
  MLS            NUMBER(5),
  SLICENUM       NUMBER(5),
  CACHEDTIME     NUMBER(5),
  STUCKTIME      NUMBER(5),
  GETSLICEERR    NUMBER(5),
  RETRANSMITRATE NUMBER(5),
  REPEATRATE     NUMBER(5),
  SECONDSFLAG    NUMBER(5),
  PART    NUMBER(5)
);

问题出现了,在执行批量建表.bat的时候提示sqlite语法错误。至今也没找到原因:

问题肯定是出现在传递的动态参数上,createTable.bat成功的接到了参数,语句在sqlite中执行不报错,放在bat里就报错。 所以第一次批量建表没成功。

那就用咱们的老本行,写JAVA程序:

需要一个驱动包:sqlitejdbc-v033-nested.jar。

代码如下:

import java.sql.*;
import org.sqlite.JDBC;
/**
 * sqlite创建数据库以及批量建表
 * @time 2014-01-07
 * @author HaiCheng
 *
 */
public class createTable {
	/**
	 * @param args
	 * @throws Exception 
	 */
	public static void main(String[] args) throws Exception {
		try{
			//1,保证SQLite数据库文件的路径首字符为小写,否则报错
			String thisPath = "e:/haicheng.db";
			String sql = "jdbc:sqlite://"+thisPath;//windows && linux都适用
			 //2,连接SQLite的JDBC
			 Class.forName("org.sqlite.JDBC"); 
			 //建立一个数据库名haicheng.db的连接,如果不存在就在当前目录下自动创建
			 Connection conn = DriverManager.getConnection(sql);
			 //3,创建表
			 Statement stat = conn.createStatement();
			 for(int i=1 ;i<=20000;i++){
			 String sql1="  create table bbb"+i+"   " +
			 				  " 	(" +
							  " ID             INTEGER primary key autoincrement," +
							  "  STREAMID       NUMBER(10)," +
							  "  STREAMTYPE     NUMBER(1)," +
							  "  FAVAILABILITY  NUMBER(5)," +
							  "  BANDWIDTH      NUMBER(4)," +
							  "  VALIDBANDWIDTH NUMBER(4)," +
							  "  MDI_DF         NUMBER(5)," +
							  "  MDI_MLR        NUMBER(5)," +
							  "  DELAY_TIME     NUMBER(5)," +
							  "  IPINTERVAL     NUMBER(5)," +
							  "  IPJITTER       NUMBER(5)," +
							  "  TIME           DATE," +
							  "  MLT15          NUMBER(5)," +
							  "  MLT24          NUMBER(5)," +
							  "  MLS            NUMBER(5)," +
							  "  SLICENUM       NUMBER(5)," +
							  "  CACHEDTIME     NUMBER(5)," +
							  "  STUCKTIME      NUMBER(5)," +
							  "  GETSLICEERR    NUMBER(5)," +
							  "  RETRANSMITRATE NUMBER(5)," +
							  "  REPEATRATE     NUMBER(5)," +
							  "  SECONDSFLAG    NUMBER(5)," +
							  "  PART    NUMBER(5)" +
							  " 	);";
			 System.out.println(sql1);
			 String sql2="CREATE INDEX index_flag"+i+" ON bbb"+i+"(SECONDSFLAG);";
			 String sql3="CREATE INDEX index_part"+i+" ON bbb"+i+"(PART);";
			 stat.executeUpdate( sql1 );
			 stat.executeUpdate( sql2 );
			 stat.executeUpdate( sql3 );
			 }
			 stat.close();
			 conn.close(); //结束数据库的连接 
		 }
		 catch( Exception e )
		 {
			 e.printStackTrace ( );
		 }
	}

}
import java.sql.*;
import org.sqlite.JDBC;
/**
 * 向第一个表中循环录入数据
 * @author HaiCheng
 *
 */
public class insertData {
	public static void main(String[] args) throws Exception {
		try{
			//1,保证SQLite数据库文件的路径首字符为小写,并且路径为unix路径
			String thisPath = "e:/haicheng.db";
			String sql = "jdbc:sqlite://"+thisPath;//windows && linux都适用
			//2,连接SQLite的JDBC
			Class.forName("org.sqlite.JDBC"); 
			//建立一个数据库名haicheng.db的连接,如果不存在就在当前目录下自动创建
			Connection conn = DriverManager.getConnection(sql);

			//4,插入一条数据
			for(int i=1;i<=86400;i++){
				 	PreparedStatement prep = conn.prepareStatement("insert into bbb1(STREAMID) values (?);");
				    prep.setInt(1, 0);
				    prep.addBatch();
				    conn.setAutoCommit(false);
				    prep.executeBatch();
			 }
			 conn.setAutoCommit(true);
			 stat.close();
			 conn.close(); //结束数据库的连接 
			 System.out.println("数据插入成功");
		 }
		 catch( Exception e )
		 {
			 System.out.println("数据插入异常");
			 e.printStackTrace ( );
		 }
	}

}
import java.sql.*;
import org.sqlite.JDBC;
/**
 * 向其余19999个表中批量拷贝数据
 * @author HaiCheng
 *
 */
public class copyData {
	public static void main(String[] args) throws Exception {
		try{
			 //1,保证SQLite数据库文件的路径首字符为小写,并且路径为unix路径
			 String thisPath = "e:/haicheng.db";
			 String sql = "jdbc:sqlite://"+thisPath;//windows && linux都适用
			 //2,连接SQLite的JDBC
			 Class.forName("org.sqlite.JDBC"); 
			 //建立一个数据库名haicheng.db的连接,如果不存在就在当前目录下自动创建
			 Connection conn = DriverManager.getConnection(sql);
			 //3,创建表
			 Statement stat = conn.createStatement();
			 for(int i=2;i<=20000;i++){
			 String sql1="insert into bbb"+i+"  select * from  bbb1";
			 System.out.println(sql1);
			 stat.execute(sql1);
			 }
			 stat.close();
			 conn.close(); //结束数据库的连接 
			 System.out.println("数据插入成功");
		 }
		 catch( Exception e )
		 {
			 System.out.println("数据插入异常");
			 e.printStackTrace ( );
		 }
	}

}
依次执行这三个类,当执行第三个类的时候也就是批量向数据库中录入数据的时候,当数据文件大小达到2G的临界点的时候(不同方式测试多遍都是这种情况),再继续写入数据,那么数据文件就会损坏(文件大小都变了,从2GB变成1MB了)。

分析各种原因:

(1)、正在写入数据的时候断电(排除,没有断电)

(2)、磁盘有坏道(排除,在磁盘中放些其他的文件,换一段空间存储这个数据同样到2GB崩溃)

(3)、数据文件所在磁盘空间不足(排除,硬盘空间足够、sqlite也不像Oracle那样有着表空间的概念)

最终我也没找到什么原因,发帖求助。

-------------------------------------------------------------------------------------------------------------------------

尴尬上面那些还是年前写的东西,也没有写完。最终是sqlite的问题没有解决。目前还是用着Mysql

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
MySQL索引基數如何影響查詢性能?MySQL索引基數如何影響查詢性能?Apr 14, 2025 am 12:18 AM

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL:新用戶的資源和教程MySQL:新用戶的資源和教程Apr 14, 2025 am 12:16 AM

MySQL學習路徑包括基礎知識、核心概念、使用示例和優化技巧。 1)了解表、行、列、SQL查詢等基礎概念。 2)學習MySQL的定義、工作原理和優勢。 3)掌握基本CRUD操作和高級用法,如索引和存儲過程。 4)熟悉常見錯誤調試和性能優化建議,如合理使用索引和優化查詢。通過這些步驟,你將全面掌握MySQL的使用和優化。

現實世界Mysql:示例和用例現實世界Mysql:示例和用例Apr 14, 2025 am 12:15 AM

MySQL在現實世界的應用包括基礎數據庫設計和復雜查詢優化。 1)基本用法:用於存儲和管理用戶數據,如插入、查詢、更新和刪除用戶信息。 2)高級用法:處理複雜業務邏輯,如電子商務平台的訂單和庫存管理。 3)性能優化:通過合理使用索引、分區表和查詢緩存來提升性能。

MySQL中的SQL命令:實踐示例MySQL中的SQL命令:實踐示例Apr 14, 2025 am 12:09 AM

MySQL中的SQL命令可以分為DDL、DML、DQL、DCL等類別,用於創建、修改、刪除數據庫和表,插入、更新、刪除數據,以及執行複雜的查詢操作。 1.基本用法包括CREATETABLE創建表、INSERTINTO插入數據和SELECT查詢數據。 2.高級用法涉及JOIN進行表聯接、子查詢和GROUPBY進行數據聚合。 3.常見錯誤如語法錯誤、數據類型不匹配和權限問題可以通過語法檢查、數據類型轉換和權限管理來調試。 4.性能優化建議包括使用索引、避免全表掃描、優化JOIN操作和使用事務來保證數據一致性

InnoDB如何處理酸合規性?InnoDB如何處理酸合規性?Apr 14, 2025 am 12:03 AM

InnoDB通過undolog實現原子性,通過鎖機制和MVCC實現一致性和隔離性,通過redolog實現持久性。 1)原子性:使用undolog記錄原始數據,確保事務可回滾。 2)一致性:通過行級鎖和MVCC確保數據一致。 3)隔離性:支持多種隔離級別,默認使用REPEATABLEREAD。 4)持久性:使用redolog記錄修改,確保數據持久保存。

MySQL的位置:數據庫和編程MySQL的位置:數據庫和編程Apr 13, 2025 am 12:18 AM

MySQL在數據庫和編程中的地位非常重要,它是一個開源的關係型數據庫管理系統,廣泛應用於各種應用場景。 1)MySQL提供高效的數據存儲、組織和檢索功能,支持Web、移動和企業級系統。 2)它使用客戶端-服務器架構,支持多種存儲引擎和索引優化。 3)基本用法包括創建表和插入數據,高級用法涉及多表JOIN和復雜查詢。 4)常見問題如SQL語法錯誤和性能問題可以通過EXPLAIN命令和慢查詢日誌調試。 5)性能優化方法包括合理使用索引、優化查詢和使用緩存,最佳實踐包括使用事務和PreparedStatemen

MySQL:從小型企業到大型企業MySQL:從小型企業到大型企業Apr 13, 2025 am 12:17 AM

MySQL適合小型和大型企業。 1)小型企業可使用MySQL進行基本數據管理,如存儲客戶信息。 2)大型企業可利用MySQL處理海量數據和復雜業務邏輯,優化查詢性能和事務處理。

幻影是什麼讀取的,InnoDB如何阻止它們(下一個鍵鎖定)?幻影是什麼讀取的,InnoDB如何阻止它們(下一個鍵鎖定)?Apr 13, 2025 am 12:16 AM

InnoDB通過Next-KeyLocking機制有效防止幻讀。 1)Next-KeyLocking結合行鎖和間隙鎖,鎖定記錄及其間隙,防止新記錄插入。 2)在實際應用中,通過優化查詢和調整隔離級別,可以減少鎖競爭,提高並發性能。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
1 個月前By尊渡假赌尊渡假赌尊渡假赌

熱工具

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)