经过几天的折腾,终于配置好了 Hadoop 2.2.0(如何配置在Linux平台部署 Hadoop 请参见本博客《在Fedora上部署Hadoop2.2.0伪分布式平台》),今天主要来说说怎么在Hadoop2.2.0伪分布式上面运行我们写好的 Mapreduce 程序。先给出这个程序所依赖的Maven包: 01 0
经过几天的折腾,终于配置好了Hadoop2.2.0(如何配置在Linux平台部署Hadoop请参见本博客《在Fedora上部署Hadoop2.2.0伪分布式平台》),今天主要来说说怎么在Hadoop2.2.0伪分布式上面运行我们写好的Mapreduce程序。先给出这个程序所依赖的Maven包:
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
好了,现在给出程序,代码如下:
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
将上面的程序编译和打包成jar文件,然后开始在Hadoop2.2.0(本文假定用户都部署好了Hadoop2.2.0)上面部署了。下面主要讲讲如何去部署:
首先,启动Hadoop2.2.0,命令如下:
1 2 |
|
如果你想看看Hadoop2.2.0是否运行成功,运行下面的命令去查看
1 2 3 4 5 6 7 8 9 |
|
其中jps是jdk自带的一个命令,在jdk/bin目录下。如果你电脑上面出现了以上的几个进程(NameNode、SecondaryNameNode、NodeManager、ResourceManager、DataNode这五个进程必须出现!)说明你的Hadoop服务器启动成功了!现在来运行上面打包好的jar文件(这里为Hadoop.jar,其中/home/wyp/IdeaProjects/Hadoop/out/artifacts/Hadoop_jar/Hadoop.jar是它的绝对路径,不知道绝对路径是什么?那你好好去学学吧!),运行下面的命令:
1 2 3 4 5 |
|
(上面是一条命令,由于太长了,所以我分行写,在实际情况中,请写一行!)其中,/home/wyp/Downloads/hadoop/bin/hadoop是hadoop的绝对路径,如果你在环境变量中配置好hadoop命令的路径就不需要这样写;com/wyp/hadoop/MaxTemperature是上面程序的main函数的入口;/user/wyp/data.txt是Hadoop文件系统(HDFS)中的绝对路径(注意:这里不是你Linux系统中的绝对路径!),为需要分析文件的路径(也就是input);/user/wyp/result是分析结果输出的绝对路径(注意:这里不是你Linux系统中的绝对路径!而是HDFS上面的路径!而且/user/wyp/result一定不能存在,否则会抛出异常!这是Hadoop的保护机制,你总不想你以前运行好几天的程序突然被你不小心给覆盖掉了吧?所以,如果/user/wyp/result存在,程序会抛出异常,很不错啊)。好了。输入上面的命令,应该会得到下面类似的输出:
13/10/28 15:20:44 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 13/10/28 15:20:44 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 13/10/28 15:20:45 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 13/10/28 15:20:45 WARN mapreduce.JobSubmitter: No job jar file set. User classes may not be found. See Job or Job#setJar(String). 13/10/28 15:20:45 INFO mapred.FileInputFormat: Total input paths to process : 1 13/10/28 15:20:46 INFO mapreduce.JobSubmitter: number of splits:2 13/10/28 15:20:46 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name 13/10/28 15:20:46 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class 13/10/28 15:20:46 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name 13/10/28 15:20:46 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir 13/10/28 15:20:46 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir 13/10/28 15:20:46 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 13/10/28 15:20:46 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class 13/10/28 15:20:46 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir 13/10/28 15:20:46 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1382942307976_0008 13/10/28 15:20:47 INFO mapred.YARNRunner: Job jar is not present. Not adding any jar to the list of resources. 13/10/28 15:20:49 INFO impl.YarnClientImpl: Submitted application application_1382942307976_0008 to ResourceManager at /0.0.0.0:8032 13/10/28 15:20:49 INFO mapreduce.Job: The url to track the job: http://wyp:8088/proxy/application_1382942307976_0008/ 13/10/28 15:20:49 INFO mapreduce.Job: Running job: job_1382942307976_0008 13/10/28 15:20:59 INFO mapreduce.Job: Job job_1382942307976_0008 running in uber mode : false 13/10/28 15:20:59 INFO mapreduce.Job: map 0% reduce 0% 13/10/28 15:21:35 INFO mapreduce.Job: map 100% reduce 0% 13/10/28 15:21:38 INFO mapreduce.Job: map 0% reduce 0% 13/10/28 15:21:38 INFO mapreduce.Job: Task Id : attempt_1382942307976_0008_m_000000_0, Status : FAILED Error: java.lang.RuntimeException: Error in configuring object at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:109) at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:75) at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:133) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:425) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:162) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1491) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:157) Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:106) ... 9 more Caused by: java.lang.RuntimeException: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class com.wyp.hadoop.MaxTemperatureMapper1 not found at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1752) at org.apache.hadoop.mapred.JobConf.getMapperClass(JobConf.java:1058) at org.apache.hadoop.mapred.MapRunner.configure(MapRunner.java:38) ... 14 more Caused by: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class com.wyp.hadoop.MaxTemperatureMapper1 not found at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1720) at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1744) ... 16 more Caused by: java.lang.ClassNotFoundException: Class com.wyp.hadoop.MaxTemperatureMapper1 not found at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1626) at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1718) ... 17 more Container killed by the ApplicationMaster. Container killed on request. Exit code is 143
程序居然抛出异常(ClassNotFoundException)!这是什么回事?其实我也不太明白!!
在网上Google了一下,找到别人的观点:
经个人总结,这通常是由于以下几种原因造成的:
(1)你编写了一个java lib,封装成了jar,然后再写了一个Hadoop程序,调用这个jar完成mapper和reducer的编写
(2)你编写了一个Hadoop程序,期间调用了一个第三方java lib。
之后,你将自己的jar包或者第三方java包分发到各个TaskTracker的HADOOP_HOME目录下,运行你的JAVA程序,报了以上错误。
那怎么解决呢?一个笨重的方法是,在运行Hadoop作业的时候,先运行下面的命令:
1 2 |
|
其中,/home/wyp/IdeaProjects/Hadoop/out/artifacts/Hadoop_jar/是上面Hadoop.jar文件所在的目录。好了,现在再运行一下Hadoop作业命令:
[wyp@wyp Hadoop_jar]$ hadoop jar /home/wyp/IdeaProjects/Hadoop/out/artifacts/Hadoop_jar/Hadoop.jar com/wyp/hadoop/MaxTemperature /user/wyp/data.txt /user/wyp/result 13/10/28 15:34:16 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 13/10/28 15:34:16 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 13/10/28 15:34:17 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 13/10/28 15:34:17 INFO mapred.FileInputFormat: Total input paths to process : 1 13/10/28 15:34:17 INFO mapreduce.JobSubmitter: number of splits:2 13/10/28 15:34:17 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name 13/10/28 15:34:17 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar 13/10/28 15:34:17 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class 13/10/28 15:34:17 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name 13/10/28 15:34:17 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir 13/10/28 15:34:17 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir 13/10/28 15:34:17 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps 13/10/28 15:34:17 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class 13/10/28 15:34:17 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir 13/10/28 15:34:18 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1382942307976_0009 13/10/28 15:34:18 INFO impl.YarnClientImpl: Submitted application application_1382942307976_0009 to ResourceManager at /0.0.0.0:8032 13/10/28 15:34:18 INFO mapreduce.Job: The url to track the job: http://wyp:8088/proxy/application_1382942307976_0009/ 13/10/28 15:34:18 INFO mapreduce.Job: Running job: job_1382942307976_0009 13/10/28 15:34:26 INFO mapreduce.Job: Job job_1382942307976_0009 running in uber mode : false 13/10/28 15:34:26 INFO mapreduce.Job: map 0% reduce 0% 13/10/28 15:34:41 INFO mapreduce.Job: map 50% reduce 0% 13/10/28 15:34:53 INFO mapreduce.Job: map 100% reduce 0% 13/10/28 15:35:17 INFO mapreduce.Job: map 100% reduce 100% 13/10/28 15:35:18 INFO mapreduce.Job: Job job_1382942307976_0009 completed successfully 13/10/28 15:35:18 INFO mapreduce.Job: Counters: 43 File System Counters FILE: Number of bytes read=144425 FILE: Number of bytes written=524725 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=1777598 HDFS: Number of bytes written=18 HDFS: Number of read operations=9 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=2 Launched reduce tasks=1 Data-local map tasks=2 Total time spent by all maps in occupied slots (ms)=38057 Total time spent by all reduces in occupied slots (ms)=24800 Map-Reduce Framework Map input records=13130 Map output records=13129 Map output bytes=118161 Map output materialized bytes=144431 Input split bytes=182 Combine input records=0 Combine output records=0 Reduce input groups=2 Reduce shuffle bytes=144431 Reduce input records=13129 Reduce output records=2 Spilled Records=26258 Shuffled Maps =2 Failed Shuffles=0 Merged Map outputs=2 GC time elapsed (ms)=321 CPU time spent (ms)=5110 Physical memory (bytes) snapshot=552824832 Virtual memory (bytes) snapshot=1228738560 Total committed heap usage (bytes)=459800576 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=1777416 File Output Format Counters Bytes Written=18
到这里,程序就成功运行了!很高兴吧?那么怎么查看刚刚程序运行的结果呢?很简单,运行下面命令:
01 02 03 04 05 06 07 08 09 10 11 |
|
到此,你自己写好的一个Mapreduce程序终于成功运行了!
附程序测试的数据的下载地址:http://pan.baidu.com/s/1iSacM
过往记忆(http://www.iteblog.com/)
编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行(http://www.iteblog.com/archives/789)

MySQL和SQLite的主要區別在於設計理念和使用場景:1.MySQL適用於大型應用和企業級解決方案,支持高性能和高並發;2.SQLite適合移動應用和桌面軟件,輕量級且易於嵌入。

MySQL中的索引是數據庫表中一列或多列的有序結構,用於加速數據檢索。 1)索引通過減少掃描數據量提升查詢速度。 2)B-Tree索引利用平衡樹結構,適合範圍查詢和排序。 3)創建索引使用CREATEINDEX語句,如CREATEINDEXidx_customer_idONorders(customer_id)。 4)複合索引可優化多列查詢,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。 5)使用EXPLAIN分析查詢計劃,避

在MySQL中使用事務可以確保數據一致性。 1)通過STARTTRANSACTION開始事務,執行SQL操作後用COMMIT提交或ROLLBACK回滾。 2)使用SAVEPOINT可以設置保存點,允許部分回滾。 3)性能優化建議包括縮短事務時間、避免大規模查詢和合理使用隔離級別。

選擇PostgreSQL而非MySQL的場景包括:1)需要復雜查詢和高級SQL功能,2)要求嚴格的數據完整性和ACID遵從性,3)需要高級空間功能,4)處理大數據集時需要高性能。 PostgreSQL在這些方面表現出色,適合需要復雜數據處理和高數據完整性的項目。

MySQL數據庫的安全可以通過以下措施實現:1.用戶權限管理:通過CREATEUSER和GRANT命令嚴格控制訪問權限。 2.加密傳輸:配置SSL/TLS確保數據傳輸安全。 3.數據庫備份和恢復:使用mysqldump或mysqlpump定期備份數據。 4.高級安全策略:使用防火牆限制訪問,並啟用審計日誌記錄操作。 5.性能優化與最佳實踐:通過索引和查詢優化以及定期維護兼顧安全和性能。

如何有效監控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。 1.使用mysqladmin查看連接數。 2.用SHOWGLOBALSTATUS查看查詢數。 3.PMM提供詳細性能數據和圖形化界面。 4.MySQLEnterpriseMonitor提供豐富的監控功能和報警機制。

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显著差异,选择时需考虑项目规模和未来扩展性。

在需要高可用性、高級安全性和良好集成性的企業級應用場景下,應選擇SQLServer而不是MySQL。 1)SQLServer提供企業級功能,如高可用性和高級安全性。 2)它與微軟生態系統如VisualStudio和PowerBI緊密集成。 3)SQLServer在性能優化方面表現出色,支持內存優化表和列存儲索引。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Dreamweaver Mac版
視覺化網頁開發工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。