搜尋
首頁資料庫mysql教程SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPING函数 先来创建一个测试表 1 USE [ tempdb ] 2 GO 3 4 CREATE TABLE #temptb(id INT ,NAME VARCHAR ( 200 )) 5 GO 6 7 INSERT INTO [ #temptb ] ( [ id ] , [ NAME ] ) 8 SELECT 1 , ' 中国 '

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPING函数

 先来创建一个测试表

<span> 1</span> <span>USE</span> <span>[</span><span>tempdb</span><span>]</span>
<span> 2</span> <span>GO</span>
<span> 3</span> 
<span> 4</span> <span>CREATE</span> <span>TABLE</span> #temptb(id <span>INT</span> ,NAME <span>VARCHAR</span>(<span>200</span><span>))
</span><span> 5</span> <span>GO</span>
<span> 6</span> 
<span> 7</span> <span>INSERT</span> <span>INTO</span> <span>[</span><span>#temptb</span><span>]</span> ( <span>[</span><span>id</span><span>]</span>, <span>[</span><span>NAME</span><span>]</span><span> )
</span><span> 8</span> <span>SELECT</span> <span>1</span>,<span>'</span><span>中国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span> 9</span> <span>SELECT</span> <span>2</span>,<span>'</span><span>中国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>10</span> <span>SELECT</span> <span>3</span>,<span>'</span><span>英国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>11</span> <span>SELECT</span> <span>4</span>,<span>'</span><span>英国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>12</span> <span>SELECT</span> <span>5</span>,<span>'</span><span>美国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>13</span> <span>SELECT</span> <span>6</span>,<span>'</span><span>美国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>14</span> <span>SELECT</span> <span>null</span>, <span>'</span><span>法国</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>15</span> <span>SELECT</span> <span>8</span>,<span>'</span><span>法国</span><span>'</span> 
<span>16</span> <span>GO</span>
<span>17</span> 
<span>18</span> <span>SELECT</span> <span>*</span> <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>
<span>19</span> <span>GO</span>

 

先来看一下SELECT语句的语法:

<span>1</span> <span>SELECT</span> <span>[</span><span> ALL | DISTINCT </span><span>]</span> <span>[</span><span> topSubclause </span><span>]</span><span> aliasedExpr 
</span><span>2</span>       <span>[</span><span>{ , aliasedExpr }</span><span>]</span> <span>FROM</span> fromClause <span>[</span><span> WHERE whereClause </span><span>]</span> <span>[</span><span> GROUP BY groupByClause [ HAVING havingClause </span><span>]</span> ] <span>[</span><span> ORDER BY orderByClause </span><span>]</span>
<span>3</span> <span>or</span>
<span>4</span> <span>SELECT</span> VALUE <span>[</span><span> ALL | DISTINCT </span><span>]</span> <span>[</span><span> topSubclause </span><span>]</span> expr <span>FROM</span> fromClause <span>[</span><span> WHERE whereClause </span><span>]</span> <span>[</span><span> GROUP BY groupByClause [ HAVING havingClause </span><span>]</span> ] <span>[</span><span> ORDER BY orderByClause</span>

 

ALL关键字:指定在结果集中可以显示重复的行,这是默认的关键字,也就是说,当您在查询中不使用ALL关键字,默认都已经附加上了ALL这个关键字

例如下面两个SQL语句,实际上是等价的,都会把重复的记录select出来

<span>1</span> <span>--</span><span>这两个语句是等价的</span>
<span>2</span> <span>SELECT</span> <span>*</span> <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>
<span>3</span> <span>GO</span>
<span>4</span> <span>--</span><span>-----------------------------------------</span>
<span>5</span> <span>SELECT</span> <span>ALL</span> <span>*</span> <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>
<span>6</span> <span>GO</span>

如果您需要把唯一值select出来,过滤掉那些重复值需要使用DISTINCT关键字

<span>1</span> <span>SELECT</span> <span>DISTINCT</span>(<span>[</span><span>NAME</span><span>]</span>) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>

而当您把SQL语句,字段放在ALL括号中,这时候就会变成一个表达式,例如下面SQL语句

<span>1</span> <span>SELECT</span> <span>ALL</span>(<span>[</span><span>NAME</span><span>]</span><span>+</span><span>'</span><span>您好</span><span>'</span>) <span>AS</span> <span>'</span><span>国别</span><span>'</span> <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

处理表重复记录(查询和删除)

在Name相同ID最大的记录,其中有一个SQL语句

<span>1</span> <span>SELECT</span>  <span>*</span>
<span>2</span> <span>FROM</span>    <span>[</span><span>#temptb</span><span>]</span><span> a
</span><span>3</span> <span>WHERE</span>   ID<span>!<all> ( <span>SELECT</span><span>    ID
</span><span>4</span>                   <span>FROM</span>      <span>[</span><span>#temptb</span><span>]</span>
<span>5</span>                   <span>WHERE</span>     Name <span>=</span> a.Name )</all></span>

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

如果去掉ALL关键字会怎样呢?

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

因为子查询需要的是一个表达式,所以需要使用ALL关键字把他变为一个表达式,所以要用ALL

 

ALL关键字还可以放在GROUP BY 之后

这里要分两种情况,一种是SQL语句中有where子句的的,另一种是SQL语句中没有where子句的

情况一:

<span>1</span> <span>SELECT</span> <span>AVG</span>(id) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span> <span>WHERE</span> NAME<span>=</span><span>'</span><span>法国</span><span>'</span> <span>GROUP</span> <span>BY</span> <span>ALL</span><span> NAME
</span><span>2</span> <span>SELECT</span> <span>AVG</span>(id) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span> <span>WHERE</span> NAME<span>=</span><span>'</span><span>法国</span><span>'</span>  <span>GROUP</span> <span>BY</span> NAME

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

对于没有符合条件的行的组,这里是没有符合name='法国',作为聚合值的列值为NULL

如果没有ALL关键字,GROUP BY子句将不显示没有符合条件的行的组

情况二:

<span>1</span> <span>SELECT</span> <span>AVG</span>(id) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>  <span>GROUP</span> <span>BY</span> <span>ALL</span><span> NAME
</span><span>2</span> <span>SELECT</span> <span>AVG</span>(id) <span>FROM</span> <span>[</span><span>#temptb</span><span>]</span>  <span>GROUP</span> <span>BY</span>  NAME

当SQL语句中没有where子句的时候,查询出来的结果都是一样的

 

ALL关键字还可以放在UNION之后

<span>1</span> <span>USE</span> <span>[</span><span>GPOSDB</span><span>]</span>
<span>2</span> <span>GO</span>
<span>3</span> <span>INSERT</span> <span>INTO</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>SystemPara</span><span>]</span> ( <span>[</span><span>ParaValue</span><span>]</span>, <span>[</span><span>Name</span><span>]</span>, <span>[</span><span>Description</span><span>]</span><span> )
</span><span>4</span> <span>SELECT</span> <span>'</span><span>nihao</span><span>'</span>,<span>'</span><span>nihao</span><span>'</span>,<span>'</span><span>nihao</span><span>'</span> <span>UNION</span> <span>ALL</span>
<span>5</span> <span>SELECT</span> <span>'</span><span>nihao</span><span>'</span>,<span>'</span><span>nihao</span><span>'</span>,<span>'</span><span>nihao</span><span>'</span> 

 


PERCENT关键字

PERCENT关键字需要跟TOP 关键字一起使用

从结果集中输出百分之N行,n必须是介于0~100之间的整数

<span>1</span> <span>SELECT</span> <span>TOP</span> <span>10</span> <span>PERCENT</span> <span>*</span> <span>from</span> <span>[</span><span>#temptb</span><span>]</span>
<span>2</span> <span>GO</span>


上面的SQL语句意思是:从[#temptb]表中输出10%的记录数,因为没有使用order by子句,所以这条记录是随机的

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

因为[#temptb]表有8条记录,8*10%=0.8 四舍五入之后相当于一条记录

<span>1</span> <span>SELECT</span> <span>TOP</span> <span>30</span> <span>PERCENT</span> <span>*</span> <span>from</span> <span>[</span><span>#temptb</span><span>]</span>
<span>2</span> <span>GO</span>

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

8*30%=2.4 四舍五入之后相当于三条记录,SQLSERVER在这里就算四舍五入不足三条记录,他也会输出偏大的数,也就是三条记录

 


CUBE关键字

CUBE关键字:如果需要在结果集内不仅包含由GROUP BY提供的正常行,还包含汇总行,可以用CUBE关键字。CUBE关键字与GROUP BY一起使用

当使用CUBE关键字的时候,可以使用GROUPING函数来输出一个额外的列,当结果行是正常的行时,返回0;当结果行是汇总行时,返回1。

<span>1</span> <span>SELECT</span>  <span>AVG</span>(id) <span>AS</span> <span>'</span><span>平均值</span><span>'</span>, <span>GROUPING</span>(NAME) <span>AS</span> <span>'</span><span>是否已汇总</span><span>'</span>
<span>2</span> <span>FROM</span>    <span>[</span><span>#temptb</span><span>]</span>
<span>3</span> <span>GROUP</span> <span>BY</span><span> NAME
</span><span>4</span>         <span>WITH</span> CUBE

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

最后一行显示了GROUP BY的记录有多少行,一共有4行记录,而在汇总行(即最后一行)是否已汇总那列显示1,表示是汇总行


Grouping关键字

指示是否聚合 GROUP BY 列表中的指定列表达式。

在结果集中,如果 GROUPING 返回 1 则指示聚合;返回 0 则指示不聚合。

如果指定了 GROUP BY,则 GROUPING 只能用在 SELECT

http://msdn.microsoft.com/zh-cn/library/ms178544(v=sql.105).aspx

GROUPING 用于区分标准空值和由 ROLLUP、CUBE 或 GROUPING SETS 返回的空值。

作为 ROLLUP、CUBE 或 GROUPING SETS 操作结果返回的 NULL 是 NULL 的特殊应用。

它在结果集内作为列的占位符,表示全体。

 

以下示例将分组 SalesQuota 并聚合 SaleYTD 数量。GROUPING 函数应用于 SalesQuota 列。

<span>1</span> <span>USE</span> <span>[</span><span>AdventureWorks</span><span>]</span><span>;
</span><span>2</span> <span>GO</span>
<span>3</span> <span>SELECT</span>  SalesQuota, <span>SUM</span>(SalesYTD) <span>'</span><span>TotalSalesYTD</span><span>'</span><span>,
</span><span>4</span>         <span>GROUPING</span>(SalesQuota) <span>AS</span> <span>'</span><span>Grouping</span><span>'</span>
<span>5</span> <span>FROM</span><span>    Sales.SalesPerson
</span><span>6</span> <span>GROUP</span> <span>BY</span><span> SalesQuota
</span><span>7</span>         <span>WITH</span><span> ROLLUP;
</span><span>8</span> <span>GO</span>

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

结果集在 SalesQuota 下面显示两个空值。

第一个 NULL 代表从表中的这一列得到的空值组。

第二个 NULL 位于 ROLLUP 操作所添加的汇总行之中。

汇总行显示所有 SalesQuota 组的 TotalSalesYTD 数量,并以 Grouping 列中的 1 进行指示。

 


 

http://msdn.microsoft.com/zh-cn/library/ms191500(v=sql.100).aspx
对简单汇总报表使用 Transact-SQL

生成简单汇总报表的应用程序可使用下列 Transact-SQL 元素:

ROLLUP、CUBE 或 GROUPING SETS 运算符。这些是 SELECT 语句的 GROUP BY 子句的扩展。

COMPUTE 或 COMPUTE BY 运算符。这两种运算符也与 GROUP BY 相关联。

这些运算符生成的结果集中,既包含每个项目的明细行,也包含每个组的汇总行,汇总行显示了该组的聚合合计。

GROUP BY 子句可用于生成只包含各组的聚合而不包含其明细行的结果。

应用程序应使用 Analysis Services,而不是 CUBE、ROLLUP、COMPUTE 或 COMPUTE BY。

特别要注意的是,CUBE 和 ROLLUP 应当只用在无法访问 OLE DB 或 ADO 的环境中,例如脚本或存储过程中。

支持 COMPUTE 和 COMPUTE BY 是为了向后兼容。

应当优先选用 ROLLUP 运算符而非 COMPUTE 或 COMPUTE BY。由 COMPUTE 或 COMPUTE BY 生成的汇总值将作为多个单独的结果集返回,

这些结果集之间还插入了包含各组明细行的结果集;或者作为包含合计的结果集返回,附加在主结果集之后。

处理这些多个结果集将增加应用程序代码的复杂性。服务器游标既不支持 COMPUTE,也不支持 COMPUTE BY。

但 ROLLUP 支持服务器游标。CUBE 和 ROLLUP 将生成单个结果集,其中包含嵌入的小计合计行。

此外,查询优化器有时还可以为 ROLLUP 生成比为 COMPUTE 和 COMPUTE BY 生成的执行计划更高效的执行计划。

如果使用不带这些运算符的 GROUP BY,将返回单个结果集,其中每组对应一行,行中包含该组的聚合小计。结果集中没有明细行。

 


SQLSERVER中CubeRollUp的用法

CubeRollUp可以对查询的数据进行汇总,在数据统计中经常用到,尤其是做报表时,用在Select语句中

下面就对两种统计方式进行对比

SQL脚本如下:

<span> 1</span> <span>USE</span> <span>[</span><span>tempdb</span><span>]</span>
<span> 2</span> <span>GO</span>
<span> 3</span> <span>CREATE</span> <span>TABLE</span><span> t_test
</span><span> 4</span> <span>(
</span><span> 5</span>   id <span>INT</span><span> ,
</span><span> 6</span>   productName <span>VARCHAR</span>(<span>200</span><span>) ,
</span><span> 7</span>   price <span>MONEY</span><span> ,
</span><span> 8</span>   num <span>INT</span><span> ,
</span><span> 9</span>   amount <span>INT</span><span> ,
</span><span>10</span>   operatedate <span>DATETIME</span>
<span>11</span> <span>)
</span><span>12</span> <span>GO</span>
<span>13</span> 
<span>14</span> <span>--</span><span>插入随机数据</span>
<span>15</span> <span>DECLARE</span> <span>@i</span> <span>INT</span> 
<span>16</span> <span>DECLARE</span> <span>@rand</span> <span>MONEY</span>
<span>17</span> <span>DECLARE</span> <span>@date</span> <span>DATETIME</span>
<span>18</span> <span>DECLARE</span> <span>@index</span> <span>INT</span> 
<span>19</span> <span>DECLARE</span> <span>@DateBase</span> <span>INT</span> 
<span>20</span> <span>SET</span> <span>@date</span> <span>=</span> <span>'</span><span>2012-10-23</span><span>'</span>
<span>21</span> <span>SET</span> <span>@i</span> <span>=</span> <span>1</span>
<span>22</span> <span>WHILE</span> ( <span>@i</span> <span> <span>18</span><span> ) 
</span><span>23</span>     <span>BEGIN</span>
<span>24</span>         <span>SET</span> <span>@rand</span> <span>=</span> <span>RAND</span>() <span>*</span> <span>20</span>
<span>25</span>         <span>SET</span> <span>@index</span> <span>=</span> <span>CAST</span>(<span>RAND</span>() <span>*</span> <span>3</span> <span>AS</span> <span>INT</span><span>)
</span><span>26</span>         <span>SET</span> <span>@DateBase</span> <span>=</span> <span>CAST</span>(<span>RAND</span>() <span>*</span> <span>10</span> <span>AS</span> <span>INT</span><span>)
</span><span>27</span>  
<span>28</span>         <span>INSERT</span>  <span>INTO</span><span> t_test ( id, productName, price, num, amount, operatedate )
</span><span>29</span>         <span>VALUES</span>  ( <span>@i</span>, <span>'</span><span>product</span><span>'</span> <span>+</span> <span>CAST</span> (<span>@index</span> <span>AS</span> <span>VARCHAR</span>(<span>10</span>)), <span>@rand</span>, <span>100</span><span>,
</span><span>30</span>                   <span>@rand</span> <span>*</span> <span>100</span>, <span>@date</span> <span>+</span> <span>@DateBase</span><span> )
</span><span>31</span>         <span>SET</span> <span>@i</span> <span>=</span> <span>@i</span> <span>+</span> <span>1</span>
<span>32</span>     <span>END</span>
<span>33</span>  
<span>34</span>  
<span>35</span> <span>SELECT</span>  <span>*</span>  <span>FROM</span>    t_test</span>

 SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

 分别用两种方式统计:

<span> 1</span> <span>--</span><span>分别用两种方式统计:</span>
<span> 2</span>  
<span> 3</span> <span>SELECT</span>  <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(operatedate) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span> 4</span>              <span>ELSE</span> <span>CONVERT</span>(<span>VARCHAR</span>(<span>10</span>), operatedate, <span>120</span><span>)
</span><span> 5</span>         <span>END</span> <span>AS</span> 日期, <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(productName) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span> 6</span>                         <span>ELSE</span><span> productName
</span><span> 7</span>                    <span>END</span> <span>AS</span> 产品名称, <span>SUM</span>(amount) <span>/</span> <span>SUM</span>(num) <span>AS</span> 平均价格, <span>SUM</span>(num) <span>AS</span><span> 数量,
</span><span> 8</span>         <span>SUM</span>(amount) <span>AS</span><span> 金额
</span><span> 9</span> <span>FROM</span><span>    t_test
</span><span>10</span> <span>GROUP</span> <span>BY</span> operatedate, productName  <span>WITH</span><span> ROLLUP;   
</span><span>11</span> <span>--</span><span>-----------------------------------------------------------------</span>
<span>12</span> <span>SELECT</span>  <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(operatedate) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span>13</span>              <span>ELSE</span> <span>CONVERT</span>(<span>VARCHAR</span>(<span>10</span>), operatedate, <span>120</span><span>)
</span><span>14</span>         <span>END</span> <span>AS</span> 日期, <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(productName) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span>15</span>                         <span>ELSE</span><span> productName
</span><span>16</span>                    <span>END</span> <span>AS</span> 产品名称, <span>SUM</span>(amount) <span>/</span> <span>SUM</span>(num) <span>AS</span> 平均价格, <span>SUM</span>(num) <span>AS</span><span> 数量,
</span><span>17</span>         <span>SUM</span>(amount) <span>AS</span><span> 金额
</span><span>18</span> <span>FROM</span><span>    t_test
</span><span>19</span> <span>GROUP</span> <span>BY</span> operatedate, productName <span>WITH</span> CUBE; 

ROLLUP 按照分组顺序,先对第一个字段operatedate分组,在组内进行统计,最后给出合计

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

<span>1</span> <span>SELECT</span>  <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(operatedate) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>  <span>--</span><span>用GROUPING得出是否是汇总行,这个例子里最后一行是汇总行</span>
<span>2</span>              <span>ELSE</span> <span>CONVERT</span>(<span>VARCHAR</span>(<span>10</span>), operatedate, <span>120</span><span>)
</span><span>3</span>         <span>END</span> <span>AS</span> 日期, <span>CASE</span> <span>WHEN</span> <span>GROUPING</span>(productName) <span>=</span> <span>1</span> <span>THEN</span> <span>'</span><span>小计</span><span>'</span>
<span>4</span>                         <span>ELSE</span><span> productName
</span><span>5</span>                    <span>END</span> <span>AS</span> 产品名称, <span>SUM</span>(amount) <span>/</span> <span>SUM</span>(num) <span>AS</span> 平均价格, <span>SUM</span>(num) <span>AS</span><span> 数量,
</span><span>6</span>         <span>SUM</span>(amount) <span>AS</span><span> 金额
</span><span>7</span> <span>FROM</span><span>    t_test
</span><span>8</span> <span>GROUP</span> <span>BY</span> operatedate, productName  <span>WITH</span> ROLLUP;   <span>--</span><span>因为operatedate和productName字段都在GROUPING函数里统计是否汇总,所以GROUP BY后面就需要加operatedate和productName这两个字段</span>

 

CUBE 会对所有的分组字段进行统计,如上例,先对日期求小计,也就是统计每天的产品总金额,然后统计每个产品的总金额,最后给出总的合计。

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

ROLLUPCUBE的区别就是: ROLLUP 只会去统计group by 后面的第一个字段每个分组的小计和第一个字段的总计
 
Grouping(字段名) 用来区分当前行是不是小计产生的行,  Grouping(字段名)=1 说明是统计行,Grouping(字段名)=0 说明是表中行

可以用在case,where 后面

http://www.2cto.com/database/201210/163455.html


另外一个例子

SQL脚本如下:

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPINSQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

<span> 1</span> <span>USE</span> <span>[</span><span>tempdb</span><span>]</span>
<span> 2</span> <span>GO</span>
<span> 3</span> <span>CREATE</span> <span>TABLE</span> Sales (EmpId <span>INT</span>, Yr <span>INT</span>, Sales <span>MONEY</span><span>)
</span><span> 4</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>, <span>2005</span>, <span>12000</span><span>)
</span><span> 5</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>, <span>2006</span>, <span>18000</span><span>)
</span><span> 6</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>, <span>2007</span>, <span>25000</span><span>)
</span><span> 7</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>, <span>2005</span>, <span>15000</span><span>)
</span><span> 8</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>, <span>2006</span>, <span>6000</span><span>)
</span><span> 9</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>, <span>2006</span>, <span>20000</span><span>)
</span><span>10</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>, <span>2007</span>, <span>24000</span><span>)
</span><span>11</span> 
<span>12</span> <span>SELECT</span> <span>*</span> <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Sales</span><span>]</span>
View Code

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

ROLLUP

<span>1</span> <span>SELECT</span> EmpId, Yr, <span>SUM</span>(Sales) <span>AS</span><span> Sales
</span><span>2</span> <span>FROM</span><span> Sales
</span><span>3</span> <span>GROUP</span> <span>BY</span> EmpId, Yr <span>WITH</span> ROLLUP

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

CUBE

<span>1</span> <span>SELECT</span> EmpId, Yr, <span>SUM</span>(Sales) <span>AS</span><span> Sales
</span><span>2</span> <span>FROM</span><span> Sales
</span><span>3</span> <span>GROUP</span> <span>BY</span> EmpId, Yr <span>WITH</span> CUBE

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

CUBE比ROLLUP多了年份的统计,统计了2005、2006、2007年的销售额

可以用下图来表示

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

ROLLUP

 SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

CUBE

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

 http://blogs.msdn.com/b/craigfr/archive/2007/10/11/grouping-sets-in-sql-server-2008.aspx

 


验证CUBE和ROLLUP 的区别

ROLLUPCUBE的区别就是: ROLLUP 只会去统计group by 后面的第一个字段每个分组的小计和第一个字段的总计

我们修改一下上面那个实验

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPINSQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

<span> 1</span> <span>USE</span> <span>[</span><span>tempdb</span><span>]</span>
<span> 2</span> <span>GO</span>
<span> 3</span> <span>CREATE</span> <span>TABLE</span> Sales (EmpId <span>INT</span>,productName <span>VARCHAR</span>(<span>200</span>), Yr <span>INT</span>, Sales <span>MONEY</span><span>)
</span><span> 4</span> <span>GO</span>
<span> 5</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>,<span>'</span><span>product2</span><span>'</span>, <span>2005</span>, <span>12000</span><span>)
</span><span> 6</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>,<span>'</span><span>product1</span><span>'</span>, <span>2005</span>, <span>18000</span><span>)
</span><span> 7</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>,<span>'</span><span>product0</span><span>'</span>, <span>2006</span>, <span>25000</span><span>)
</span><span> 8</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>1</span>,<span>'</span><span>product2</span><span>'</span>, <span>2007</span>, <span>15000</span><span>)
</span><span> 9</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>,<span>'</span><span>product1</span><span>'</span>, <span>2005</span>, <span>60000</span><span>)
</span><span>10</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>,<span>'</span><span>product1</span><span>'</span>, <span>2006</span>, <span>22000</span><span>)
</span><span>11</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>2</span>,<span>'</span><span>product0</span><span>'</span>, <span>2007</span>, <span>24000</span><span>)
</span><span>12</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>,<span>'</span><span>product0</span><span>'</span>, <span>2005</span>, <span>32000</span><span>)
</span><span>13</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>,<span>'</span><span>product2</span><span>'</span>, <span>2006</span>, <span>42000</span><span>)
</span><span>14</span> <span>INSERT</span> Sales <span>VALUES</span>(<span>3</span>,<span>'</span><span>product0</span><span>'</span>, <span>2007</span>, <span>24000</span><span>)
</span><span>15</span> <span>GO</span>
<span>16</span> 
<span>17</span> <span>SELECT</span> <span>*</span> <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Sales</span><span>]</span>
View Code

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

 ROLLUP

<span>1</span> <span>SELECT</span> EmpId, Yr,<span>[</span><span>productName</span><span>]</span>, <span>SUM</span>(Sales) <span>AS</span><span> Sales
</span><span>2</span> <span>FROM</span><span> Sales
</span><span>3</span> <span>GROUP</span> <span>BY</span> EmpId, Yr,<span>[</span><span>productName</span><span>]</span> <span>WITH</span> ROLLUP

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

CUBE

<span>1</span> <span>SELECT</span> EmpId, Yr,<span>[</span><span>productName</span><span>]</span>, <span>SUM</span>(Sales) <span>AS</span><span> Sales
</span><span>2</span> <span>FROM</span><span> Sales
</span><span>3</span> <span>GROUP</span> <span>BY</span> EmpId, Yr,<span>[</span><span>productName</span><span>]</span> <span>WITH</span> CUBE

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

SQLSERVER中的ALL、PERCENT、CUBE关键字、ROLLUP关键字和GROUPIN

可以看到CUBE除了统计EmpId字段之外,还统计了GROUP BY后面的Yr和productName这两个字段

而ROLLUP只统计了EmpId这个字段


 

总结

这些关键字和函数对平时用于统计的应用程序都非常有用,如果大家对这些函数功能都很熟悉的话,在开发当中一定能够得心应手

另外,个人觉得PERCENT关键字可以应用在分页上

 

如有不对的地方,欢迎大家拍砖哦o(∩_∩)o

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
MySQL的位置:數據庫和編程MySQL的位置:數據庫和編程Apr 13, 2025 am 12:18 AM

MySQL在數據庫和編程中的地位非常重要,它是一個開源的關係型數據庫管理系統,廣泛應用於各種應用場景。 1)MySQL提供高效的數據存儲、組織和檢索功能,支持Web、移動和企業級系統。 2)它使用客戶端-服務器架構,支持多種存儲引擎和索引優化。 3)基本用法包括創建表和插入數據,高級用法涉及多表JOIN和復雜查詢。 4)常見問題如SQL語法錯誤和性能問題可以通過EXPLAIN命令和慢查詢日誌調試。 5)性能優化方法包括合理使用索引、優化查詢和使用緩存,最佳實踐包括使用事務和PreparedStatemen

MySQL:從小型企業到大型企業MySQL:從小型企業到大型企業Apr 13, 2025 am 12:17 AM

MySQL適合小型和大型企業。 1)小型企業可使用MySQL進行基本數據管理,如存儲客戶信息。 2)大型企業可利用MySQL處理海量數據和復雜業務邏輯,優化查詢性能和事務處理。

幻影是什麼讀取的,InnoDB如何阻止它們(下一個鍵鎖定)?幻影是什麼讀取的,InnoDB如何阻止它們(下一個鍵鎖定)?Apr 13, 2025 am 12:16 AM

InnoDB通過Next-KeyLocking機制有效防止幻讀。 1)Next-KeyLocking結合行鎖和間隙鎖,鎖定記錄及其間隙,防止新記錄插入。 2)在實際應用中,通過優化查詢和調整隔離級別,可以減少鎖競爭,提高並發性能。

mysql:不是編程語言,而是...mysql:不是編程語言,而是...Apr 13, 2025 am 12:03 AM

MySQL不是一門編程語言,但其查詢語言SQL具備編程語言的特性:1.SQL支持條件判斷、循環和變量操作;2.通過存儲過程、觸發器和函數,用戶可以在數據庫中執行複雜邏輯操作。

MySQL:世界上最受歡迎的數據庫的簡介MySQL:世界上最受歡迎的數據庫的簡介Apr 12, 2025 am 12:18 AM

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

MySQL的重要性:數據存儲和管理MySQL的重要性:數據存儲和管理Apr 12, 2025 am 12:18 AM

MySQL是一個開源的關係型數據庫管理系統,適用於數據存儲、管理、查詢和安全。 1.它支持多種操作系統,廣泛應用於Web應用等領域。 2.通過客戶端-服務器架構和不同存儲引擎,MySQL高效處理數據。 3.基本用法包括創建數據庫和表,插入、查詢和更新數據。 4.高級用法涉及復雜查詢和存儲過程。 5.常見錯誤可通過EXPLAIN語句調試。 6.性能優化包括合理使用索引和優化查詢語句。

為什麼要使用mysql?利益和優勢為什麼要使用mysql?利益和優勢Apr 12, 2025 am 12:17 AM

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

描述InnoDB鎖定機制(共享鎖,獨家鎖,意向鎖,記錄鎖,間隙鎖,下一鍵鎖)。描述InnoDB鎖定機制(共享鎖,獨家鎖,意向鎖,記錄鎖,間隙鎖,下一鍵鎖)。Apr 12, 2025 am 12:16 AM

InnoDB的鎖機制包括共享鎖、排他鎖、意向鎖、記錄鎖、間隙鎖和下一個鍵鎖。 1.共享鎖允許事務讀取數據而不阻止其他事務讀取。 2.排他鎖阻止其他事務讀取和修改數據。 3.意向鎖優化鎖效率。 4.記錄鎖鎖定索引記錄。 5.間隙鎖鎖定索引記錄間隙。 6.下一個鍵鎖是記錄鎖和間隙鎖的組合,確保數據一致性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具