1. 背景 2.hbase查询的确是不太方便,除了指定rowkey,或者通过指定startkey stopkey进行scan之外,没有更有效的查询方式 如果想通过列值过滤,只能全表扫描了 如果要搞什么group by或者order by(除非你的rowkey做了相应设计) 更是没法弄 在传统的mysql/or
1. 背景
2.hbase查询的确是不太方便,除了指定rowkey,或者通过指定startkey stopkey进行scan之外,没有更有效的查询方式 如果想通过列值过滤,只能全表扫描了 如果要搞什么group by或者order by(除非你的rowkey做了相应设计) 更是没法弄 在传统的mysql/oracle得心应手的查询在hbase上就是束手束脚
3.当然可以通过写hadoop job解决问题,但为了查询去写job,代价未免有点高 于是hive出现了
4.有两个方法可以集成hive和hbase
1.使用HBaseStorageHandler,这个会直接操作HBase,可能会对线上产生影响
2.将HBase定期导入到HDFS,再通过hive访问HDFS
下面将详述第二种方法
HDFS导入
1.使用datax将HBase表导入到HDFS上,比如/group/wireless-arctic/task/arctic_task
2.hive产生外部表,从而避免导入数据
CREATE EXTERNAL TABLE task_history (
biz_type string,
cid string,
content string,
ctime string,
gmt_create string,
hostName string,
item string,
mtime string,
otags string,
priority string,
retry string,
result string,
srcImages string,
src_url string,
status string,
summary string,
task_type string,
title string,
userId string,
userNick string,
utags string,
writer string
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001'
LOCATION '/group/wireless-arctic/task';location是云梯文件的目录
3.测试
select cid,result from task_history limit 10;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Selecting distributed mode: Input Size (= 2578823293 = 2 gigabytes 411 megabytes 366 kilobytes 125 bytes) is larger than hive.exec.mode.local.auto.inputbytes.max (= 134217728 = 128 megabytes 0 kilobytes 0 bytes)
Starting Job = job_201311281255_6734353, Tracking URL = http://hdpjt2.alibaba-inc.com/jobdetails.jsp?jobid=job_201311281255_6734353
Kill Command = /home/hadoop/hadoop-current/bin/../bin/hadoop job -Dmapred.job.tracker=hdpjt:9001 -kill job_201311281255_6734353
Hadoop job information for Stage-1: number of mappers: 10; number of reducers: 0
2013-12-19 18:53:02,891 Stage-1 map = 0%, reduce = 0%
2013-12-19 18:53:11,017 Stage-1 map = 50%, reduce = 0%
2013-12-19 18:53:12,033 Stage-1 map = 90%, reduce = 0%
2013-12-19 18:53:19,394 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201311281255_6734353
OK
200011928538 success
200011928538 success
200011909281 success
200011928474 success
200011909281 success
200011928474 success
110010569498 failure:userId:1782836127,contentId:110010569498 ImageFlow,call error and ret:1
110010523403 success
110010523921 success
110010524299 success
Time taken: 23.137 seconds = 23 seconds 137 milliseconds添加分区及自动化
1.完成了上面的步骤,你就可以查询数据了,但面临一个问题,数据更新怎么办?
一个比较通用的做法就是每天跑一个定时任务将HBase表dump到HDFS,即每天一个快照每天的快照可以存放在以日期命名的目录中,这样可以保存多份快照,出了问题也好追踪2.hive如何利用这每天的快照?
那就是hive分区
分区的本意是数据量大了切分数据,但目前我们并未如此使用,而是利用分区来区分快照删除之前的表
drop table task_history;产生一张分区表
CREATE EXTERNAL TABLE task_history (
biz_type string,
cid string,
content string,
ctime string,
gmt_create string,
hostName string,
item string,
mtime string,
otags string,
priority string,
retry string,
result string,
srcImages string,
src_url string,
status string,
summary string,
task_type string,
title string,
userId string,
userNick string,
utags string,
writer string
)
PARTITIONED BY (dt string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001'
LOCATION '/group/wireless-arctic/task';其实就是在之前的建表语句中加了一行PARTITIONED BY (dt string)
添加分区
ALTER TABLE task_history ADD PARTITION(dt='20131223') LOCATION '/group/wireless-arctic/task/20131223';3.如何自动化
通过工具比如datax或者其他导出工具将HBase表导出到HDFS,正如前面提到的每天一个目录(以日期命名)
将每天的数据目录挂载到hive分区
hive -e "ALTER TABLE task_history ADD PARTITION(dt=`date -d yesterday +%Y%m%d`) LOCATION '/group/wireless-arctic/task/`date -d yesterday +%Y%m%d`';"将前面2个步骤的脚本整合到crontab 中就可以做到自动化了
最后如何通过分区查询
select * from task_history where dt='20131223' limit 10;即加上分区查询条件dt='20131223'

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

MySQL是一個開源的關係型數據庫管理系統,適用於數據存儲、管理、查詢和安全。 1.它支持多種操作系統,廣泛應用於Web應用等領域。 2.通過客戶端-服務器架構和不同存儲引擎,MySQL高效處理數據。 3.基本用法包括創建數據庫和表,插入、查詢和更新數據。 4.高級用法涉及復雜查詢和存儲過程。 5.常見錯誤可通過EXPLAIN語句調試。 6.性能優化包括合理使用索引和優化查詢語句。

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

InnoDB的鎖機制包括共享鎖、排他鎖、意向鎖、記錄鎖、間隙鎖和下一個鍵鎖。 1.共享鎖允許事務讀取數據而不阻止其他事務讀取。 2.排他鎖阻止其他事務讀取和修改數據。 3.意向鎖優化鎖效率。 4.記錄鎖鎖定索引記錄。 5.間隙鎖鎖定索引記錄間隙。 6.下一個鍵鎖是記錄鎖和間隙鎖的組合,確保數據一致性。

MySQL查询性能不佳的原因主要包括没有使用索引、查询优化器选择错误的执行计划、表设计不合理、数据量过大和锁竞争。1.没有索引导致查询缓慢,添加索引后可显著提升性能。2.使用EXPLAIN命令可以分析查询计划,找出优化器错误。3.重构表结构和优化JOIN条件可改善表设计问题。4.数据量大时,采用分区和分表策略。5.高并发环境下,优化事务和锁策略可减少锁竞争。

在數據庫優化中,應根據查詢需求選擇索引策略:1.當查詢涉及多個列且條件順序固定時,使用複合索引;2.當查詢涉及多個列但條件順序不固定時,使用多個單列索引。複合索引適用於優化多列查詢,單列索引則適合單列查詢。

要優化MySQL慢查詢,需使用slowquerylog和performance_schema:1.啟用slowquerylog並設置閾值,記錄慢查詢;2.利用performance_schema分析查詢執行細節,找出性能瓶頸並優化。

MySQL和SQL是開發者必備技能。 1.MySQL是開源的關係型數據庫管理系統,SQL是用於管理和操作數據庫的標準語言。 2.MySQL通過高效的數據存儲和檢索功能支持多種存儲引擎,SQL通過簡單語句完成複雜數據操作。 3.使用示例包括基本查詢和高級查詢,如按條件過濾和排序。 4.常見錯誤包括語法錯誤和性能問題,可通過檢查SQL語句和使用EXPLAIN命令優化。 5.性能優化技巧包括使用索引、避免全表掃描、優化JOIN操作和提升代碼可讀性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。