在搜索领域query的处理变得越来越重要,其中分类就是很重要的一环,对query分类是比较难的工程,因为query普遍较短,含有的信息(熵)很少,所以很难进行分类,普遍的方法是对query进行扩展,例如抓取搜索引擎的结果,或是直接将query扩展到对应的doc,然后
在搜索领域query的处理变得越来越重要,其中分类就是很重要的一环,对query分类是比较难的工程,因为query普遍较短,含有的信息(熵)很少,所以很难进行分类,普遍的方法是对query进行扩展,例如抓取搜索引擎的结果,或是直接将query扩展到对应的doc,然后对doc进行分类,对doc分类就变得容易了,而且准确率比较高,最近看到word2vec很火,使用的是无监督的机器学习,也就是不需要标注数据,于是就研究了一下,看是否可以使用结果用于query分类扩展。
where is word2vec?
https://code.google.com/p/word2vec/
可以在上面下载具体的代码进行编译,生成相关的分析工具,上面的C代码写的有些“抽象”,以下有C++版本,看起来比较直观
https://github.com/jdeng/word2vec
训练语料获取
可以在搜狗试验室中获取一些新闻数据,尽管比较老但是将就着用,其实感觉微博的数据会好些,一是数据量大,二是信息含量比较高(新鲜东西比较多),新闻的语料可以在
http://www.sogou.com/labs/dl/ca.html 上获取,只要简单的注册一下就可以,在windows下下载还是比较麻烦的,需要用ftp工具,实际上可以用windows自带的ftp.exe就可以下载。
1、在cmd窗口下执行 ftp ftp.labs.sogou.com
2、输入注册生成的用户名
3、输入注册生成的密码,然后就可以连接到ftp上
4、cd到对应的目录,执行dir或ls就可以看到具体的文件
5、get news_tensite_xml.full.tar.gz 就可以下载文件到个人文档目录了
处理语料及分词
语料是xml结构的,需要将新闻内容清洗出来
cat news_tensite_xml.dat | iconv -f gbk -t utf-8 -c | grep "<content>" | sed 's\<content>\\' | sed 's\</content>\\' > news.txt</content>
这样就可以将新闻内容清洗出来,一行一篇文章,接下来就对对语料进行分词了,找了一些开源的分词,java版本的有些比较难用,有时莫名其妙的乱码问题就要折腾半天,这里就是用了中科院的分词ICTCLAS,C++版本的,在linux下运行比较简单,我已经写好了分词的程序,放到CSDN上,需要的可以直接下载,包括库,分词词典,还有二进制程序,分词工具,点此进入下载。ICTCLAS分词器相关资料可以查看http://hi.baidu.com/drkevinzhang/
语料总计有1143394篇文章,分词后数据文件有2.2G,分词后的情况如下:
运行word2vec进行分析
./word2vec -train out.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1

这个过程可能需要一段时间的等待,运行完成后,会生成vectors.bin文件,接着就可以利用提供的余弦计算工具查看关键词的相关词了
执行./distance vectors.bin 然后输入想看的查询词就可以看到效果了。
可以看到针对实体名称,分析的结果还是很靠谱的,如果针对语料做些预处理相信结果会更好。
可以通过
./word2vec -train out.txt -output classes.txt -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -classes 500
对分析结果进行聚类用于query方面的分类,结果如下:
将单词去除后,结果还是比较可观的。
参考:
http://blog.csdn.net/zhaoxinfan/article/details/11069485
https://code.google.com/p/word2vec/
请关注我的博客 word2vec实践及对关键词聚类

mysqloffersvariousStorageengines,每個suitedfordferentusecases:1)InnodBisidealForapplicationsNeedingingAcidComplianCeanDhighConcurncurnency,supportingtransactionsancions and foreignkeys.2)myisamisbestforread-Heavy-Heavywyworks,lackingtransactionsactionsacupport.3)記憶

MySQL中常見的安全漏洞包括SQL注入、弱密碼、權限配置不當和未更新的軟件。 1.SQL注入可以通過使用預處理語句防止。 2.弱密碼可以通過強制使用強密碼策略避免。 3.權限配置不當可以通過定期審查和調整用戶權限解決。 4.未更新的軟件可以通過定期檢查和更新MySQL版本來修補。

在MySQL中識別慢查詢可以通過啟用慢查詢日誌並設置閾值來實現。 1.啟用慢查詢日誌並設置閾值。 2.查看和分析慢查詢日誌文件,使用工具如mysqldumpslow或pt-query-digest進行深入分析。 3.優化慢查詢可以通過索引優化、查詢重寫和避免使用SELECT*來實現。

要監控MySQL服務器的健康和性能,應關注系統健康、性能指標和查詢執行。 1)監控系統健康:使用top、htop或SHOWGLOBALSTATUS命令查看CPU、內存、磁盤I/O和網絡活動。 2)追踪性能指標:監控查詢每秒數、平均查詢時間和緩存命中率等關鍵指標。 3)確保查詢執行優化:啟用慢查詢日誌,記錄並優化執行時間超過設定閾值的查詢。

MySQL和MariaDB的主要區別在於性能、功能和許可證:1.MySQL由Oracle開發,MariaDB是其分支。 2.MariaDB在高負載環境中性能可能更好。 3.MariaDB提供了更多的存儲引擎和功能。 4.MySQL採用雙重許可證,MariaDB完全開源。選擇時應考慮現有基礎設施、性能需求、功能需求和許可證成本。

MySQL使用的是GPL許可證。 1)GPL許可證允許自由使用、修改和分發MySQL,但修改後的分發需遵循GPL。 2)商業許可證可避免公開修改,適合需要保密的商業應用。

選擇InnoDB而不是MyISAM的情況包括:1)需要事務支持,2)高並發環境,3)需要高數據一致性;反之,選擇MyISAM的情況包括:1)主要是讀操作,2)不需要事務支持。 InnoDB適合需要高數據一致性和事務處理的應用,如電商平台,而MyISAM適合讀密集型且無需事務的應用,如博客系統。

在MySQL中,外鍵的作用是建立表與表之間的關係,確保數據的一致性和完整性。外鍵通過引用完整性檢查和級聯操作維護數據的有效性,使用時需注意性能優化和避免常見錯誤。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具