奥卡姆剃刀原则(Occam's Razor) 有一句话是这样说的,An explanation of the data should be mad as simple as possible,but no simpler。 在机器学习中其意义就是,对数据最简单的解释也就是最好的解释(The simplest model that fits the data is also t
奥卡姆剃刀原则(Occam's Razor)
有一句话是这样说的,"An explanation of the data should be mad as simple as possible,but no simpler"。
在机器学习中其意义就是,对数据最简单的解释也就是最好的解释(The simplest model that fits the data is also the most plausible)。
比如上面的图片,右边是不是比左边解释的更好呢?显然不是这样的。
如无必要,勿增实体
奥卡姆剃刀定律,即简单有效原则,说的是,切勿浪费较多东西去做,用较少的东西,同样可以做好的事情。
所以,相比复杂的假设,我们更倾向于选择简单的、参数少的假设;同时,我们还希望选择更加简单的模型,使得有效的假设的数量不是很多。
另一种解释是,假设有一个简单的假设H,如果它可以很好的区分一组数据,那么说明这组数据确实是存在某种规律性。
抽样偏差(Sampling Bias)
If the data is sampled in a biased way,learning will produce a similarily biased outcome.
这句话告诉我们,如果抽样的数据是有偏差的,那么学习的效果也是有偏差的,这种情形称作是抽样偏差。
在实际情况中,我们需要训练数据和测试数据来自同一分布。
为了避免这样的问题,我们可以做的是要了解测试环境,让训练环境或者说是训练数据和测试环境尽可能的接近。
数据窥探(Data Snooping)
你在使用数据任何过程都是间接的窥探了数据,所以你在下决策的时候,你要知道,这些数据可能已经被你头脑中的模型复杂度所污染。
有效避免这种情况的方法有:
- 做决定之前不要看数据
- 要时刻存有怀疑
Github主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)

计算是我们大多数人凭直觉就能理解的一个熟悉概念。我们以函数f(x)=x+3为例,当x为3时,f(3)=3+3。答案是6,非常简单。很明显,这个函数是可计算的。但是有些函数并非那么简单,而且要确定它们是否可以计算也非易事,这意味着它们可能永远都无法得出一个最终答案。1928年,德国数学家大卫・希尔伯特(DavidHilbert)和威廉・阿克曼(WilhelmAckermann)提出了一个名为Entscheidungsproblem(即「判定性问题」)的问题。随着时间推移,他们提出的这个问题将引出可

作为一名Java开发者,学习和使用Spring框架已经是一项必不可少的技能。而随着云计算和微服务的盛行,学习和使用SpringCloud成为了另一个必须要掌握的技能。SpringCloud是一个基于SpringBoot的用于快速构建分布式系统的开发工具集。它为开发者提供了一系列的组件,包括服务注册与发现、配置中心、负载均衡和断路器等,使得开发者在构建微

通过对齐三维形状、二维图片以及相应的语言描述,多模态预训练方法也带动了3D表征学习的发展。不过现有的多模态预训练框架收集数据的方法缺乏可扩展性,极大限制了多模态学习的潜力,其中最主要的瓶颈在于语言模态的可扩展性和全面性。最近,SalesforceAI联手斯坦福大学和得克萨斯大学奥斯汀分校,发布了ULIP(CVPR2023)和ULIP-2项目,这些项目正在引领3D理解的新篇章。论文链接:https://arxiv.org/pdf/2212.05171.pdf论文链接:https://arxiv.o

win7系统自带有备份还原系统的功能,如果之前有给win7系统备份的话,当电脑出现系统故障的时候,我们可以尝试通过win7还原系统修复。那么win7怎么还原系统呢?下面小编就教下大家如何还原win7系统。具体的步骤如下:1、开机在进入Windows系统启动画面之前按下F8键,然后出现系统启动菜单,选择安全模式登陆即可进入。2、进入安全模式之后,点击“开始”→“所有程序”→“附件”→“系统工具”→“系统还原”。3、最后只要选择最近手动设置过的还原点以及其他自动的还原点都可以,但是最好下一步之前点击

随着Web应用程序的需求越来越高,PHP技术在开发领域中变得越来越重要。在PHP开发方面,测试是一个必要的步骤,它可以帮助开发者确保他们创建的代码在各种情况下都可靠和实用。在PHP中,一个流行的测试框架是PHPUnit。PHPUnit是一个基于Junit的测试框架,其目的是创建高质量、可维护和可重复的代码。下面是一些学习使用PHPUnit框架的基础知识和步骤

1.人工智能发展轨迹人工智能(AritificialIntelligene)的概念在1956年,约翰·麦卡锡在达茅斯学院夏季学术研讨会上首次提出之前,人类已经在机器替代人类从事繁重、重复劳动的道路上不断地探索。1882年2月,尼古拉·特斯拉完成了困扰其5年的交流电发电机设想,欣喜若狂地感叹道“从此之后人类不再是重体力劳动的奴役,我的机器将解放他们,全世界都将如此”。1936年,为证明数学中存在不可判定命题,艾伦·图灵提出“图灵机”的设想,1948年在论文《INTELLIGENTMACHINERY

为什么AI总是很难落地?为什么人工智能常常被人诟病?有人说这是由于科幻电影、科幻小说、电子游戏、新闻媒体等造成的,这个观点有一定的合理成分,但还有一个更重要的事实为大家所忽略,那就是本应为“人机环境系统融合智能”常常被误认为是“人工智能(甚至是一些算法)”所致。生命和机器虽然都可以作为认知的载体,但认知的性质是不同的。一个是生命的认知,一个是机器的认知,是特定人对特定事物的认知。人机智能解决的重点是方向和风险,人机工效解决的是过程和效率。计算-算计的机制机理构建是人机混合智能突破关键。群体智能的

香港中文大学(深圳)吴保元教授课题组和浙江大学秦湛教授课题组联合发表了一篇后门防御领域的文章,已顺利被ICLR2022接收。近年来,后门问题受到人们的广泛关注。随着后门攻击的不断提出,提出针对一般化后门攻击的防御方法变得愈加困难。该论文提出了一个基于分割后门训练过程的后门防御方法。本文揭示了后门攻击就是一个将后门投影到特征空间的端到端监督训练方法。在此基础上,本文分割训练过程来避免后门攻击。该方法与其他后门防御方法进行了对比实验,证明了该方法的有效性。收录会议:ICLR2022文章链接:http


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。