最近处理一个问题的时候,先是收到DB time升高的报警,然后查看DB time的情况发现,已经有近1000%的负载了。
最近处理一个问题的时候,先是收到DB time升高的报警,然后查看DB time的情况发现,已经有近1000%的负载了。
带着好奇心想看看到底是什么样的一个语句导致如此的情况。
先抓取了一个awr报告,因为问题发生的时间段比较集中而且时间持续有几个小时,所以抓取了一个小时的快照。
得到的awr部分内容如下:
Cache Sizes
BeginEnd
Buffer Cache: 39,472M 39,472M Std Block Size: 8K
Shared Pool Size: 1,440M 1,440M Log Buffer: 14,256K
从下面的部分可以看出数据库其实内部的活动并不多,redo生成量不高,tps也不高。
Load Profile
Per SecondPer Transaction
Redo size: 154,276.41 24,024.13
Logical reads: 4,864.90 757.57
Block changes: 779.75 121.42
Physical reads: 509.53 79.35
Physical writes: 359.90 56.04
User calls: 2,658.46 413.98
Parses: 837.89 130.48
Hard parses: 0.09 0.01
Sorts: 171.22 26.66
Logons: 0.47 0.07
Executes: 949.10 147.80
Transactions: 6.42
而查看等待时间,发现第一个等待事件是db file sequential read,平均等待时间有近17ms,
延迟一般需要在10ms以下,或者至少100 reads/sec,在基于SAN存储缓存数据的情况下,sequential read的指标有时候会保持在2ms左右,这个只能说明SAN已经把数据转化为缓存了,倒不能说明硬盘驱动确实很快。这个地方已经超过了10ms说明IO上还是存在较大的影响。我们先放过这个问题,继续往下看。
EventWaitsTime(s)Avg Wait(ms)% Total Call TimeWait Class
db file sequential read 917,810 15,310 17 96.1 User I/O
CPU time 596 3.7
log file sync 16,085 186 12 1.2 Commit
log file parallel write 15,466 140 9 .9 System I/O
ARCH wait on SENDREQ 374 10 27 .1 Network
而根据时间模型来看,绝大部分的DB time都在sql语句方面,所以关注sql语句就是一个很重要的部分。
Statistic NameTime (s)% of DB Time
sql execute elapsed time 15,533.43 97.47
DB CPU 596.11 3.74
connection management call elapsed time 82.89 0.52
parse time elapsed 20.22 0.13
而对于top1的sql语句让自己和吃惊,竟然是一个很简单的update.
Elapsed Time (s)CPU Time (s)ExecutionsElap per Exec (s)% Total DB TimeSQL IdSQL ModuleSQL Text
8,659 69 622 13.92 54.34 update user_test t set t.login_status='' where t.CN_TEST=:1
第一感觉就是这个语句走了全表扫描,因为一个简单的Update竟然需要花费近13秒的时间,,已经算很长的了。
当然猜测也需要验证,我们来看看awrsqrpt的结果。
发现这个报告还是蛮有意思。至于执行计划是走了唯一性索引扫描,所以执行计划的情况来看还是没有问题的。
IdOperationNameRowsBytesCost (%CPU)Time
0 UPDATE STATEMENT 1 (100)
1 UPDATE USER_BILLING
2 INDEX UNIQUE SCAN IDX_USER_TEST_CNMASTER 1 30 1 (0) 00:00:01
但是查看sql语句的执行统计信息,就有些奇怪了。
Stat NameStatement TotalPer Execution% Snap Total
Elapsed Time (ms) 8,659,180 13,921.51 54.34
CPU Time (ms) 69,346 111.49 11.63
Executions 622
Buffer Gets 3,146,068 5,057.99 35.91
Disk Reads 645,229 1,037.35 70.31
Parse Calls 622 1.00 0.04
Rows 621,827 999.72
User I/O Wait Time (ms) 8,608,075
sql语句的执行总共持续8659s左右,然后8608s的时间在user I/O的等待上,这样下来,622次的执行其实花费的时间并不多。
对于这个问题,自己也比较疑惑,开始怀疑是否是磁盘的IO上出现了问题。
但是使用MegaCli查看的时候,发现不存在任何的坏块。
# MegaCli -CfgDsply -a0|grep Error
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
Other Error Count: 0
Media Error Count: 0
这个时候的一个猜测就是可能由绑定变量的数据类型不同导致的sql性能问题。但是排查一番,发现还是没有得到自己期望的结果。
查看输入的参数类型,都是期望中的varchar2,所以sql语句的过程中还是不会出现自己猜想的全表扫描的可能性。
select name,datatype_string,value_string,datatype from DBA_HIST_SQLBIND where sql_id='94p345yuqh3zd' and snap_id between 58711 and 58712
NAME DATATYPE_STRING VALUE_STRING DATATYPE
------------------------------ --------------- ------------------------------ ----------
:1 VARCHAR2(128) xxxxxx9@test.com 1
:1 VARCHAR2(128) 23234324324234 1
对于IO的瓶颈问题,自己还是从addm中得到了自己需要的东西。
对于磁盘吞吐量的说法,addm的报告中是这么描述的。
FINDING 6: 39% impact (6136 seconds)
------------------------------------
The throughput of the I/O subsystem was significantly lower than expected.

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

MySQL是一個開源的關係型數據庫管理系統,適用於數據存儲、管理、查詢和安全。 1.它支持多種操作系統,廣泛應用於Web應用等領域。 2.通過客戶端-服務器架構和不同存儲引擎,MySQL高效處理數據。 3.基本用法包括創建數據庫和表,插入、查詢和更新數據。 4.高級用法涉及復雜查詢和存儲過程。 5.常見錯誤可通過EXPLAIN語句調試。 6.性能優化包括合理使用索引和優化查詢語句。

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

InnoDB的鎖機制包括共享鎖、排他鎖、意向鎖、記錄鎖、間隙鎖和下一個鍵鎖。 1.共享鎖允許事務讀取數據而不阻止其他事務讀取。 2.排他鎖阻止其他事務讀取和修改數據。 3.意向鎖優化鎖效率。 4.記錄鎖鎖定索引記錄。 5.間隙鎖鎖定索引記錄間隙。 6.下一個鍵鎖是記錄鎖和間隙鎖的組合,確保數據一致性。

MySQL查询性能不佳的原因主要包括没有使用索引、查询优化器选择错误的执行计划、表设计不合理、数据量过大和锁竞争。1.没有索引导致查询缓慢,添加索引后可显著提升性能。2.使用EXPLAIN命令可以分析查询计划,找出优化器错误。3.重构表结构和优化JOIN条件可改善表设计问题。4.数据量大时,采用分区和分表策略。5.高并发环境下,优化事务和锁策略可减少锁竞争。

在數據庫優化中,應根據查詢需求選擇索引策略:1.當查詢涉及多個列且條件順序固定時,使用複合索引;2.當查詢涉及多個列但條件順序不固定時,使用多個單列索引。複合索引適用於優化多列查詢,單列索引則適合單列查詢。

要優化MySQL慢查詢,需使用slowquerylog和performance_schema:1.啟用slowquerylog並設置閾值,記錄慢查詢;2.利用performance_schema分析查詢執行細節,找出性能瓶頸並優化。

MySQL和SQL是開發者必備技能。 1.MySQL是開源的關係型數據庫管理系統,SQL是用於管理和操作數據庫的標準語言。 2.MySQL通過高效的數據存儲和檢索功能支持多種存儲引擎,SQL通過簡單語句完成複雜數據操作。 3.使用示例包括基本查詢和高級查詢,如按條件過濾和排序。 4.常見錯誤包括語法錯誤和性能問題,可通過檢查SQL語句和使用EXPLAIN命令優化。 5.性能優化技巧包括使用索引、避免全表掃描、優化JOIN操作和提升代碼可讀性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

Atom編輯器mac版下載
最受歡迎的的開源編輯器

Dreamweaver CS6
視覺化網頁開發工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。