社交网络中基于张量分解的好友推荐 摘要 引言 相关研究 问题描述 所提好友推荐方法 实验验证 结论 摘要 社交网络中快速增长的用户对现有好友推荐系统提出了挑战。本文我们用张量分解模型基于用户的标签行为信息提出了一种新的推荐框架,解决社交网络中的好友
社交网络中基于张量分解的好友推荐
- 摘要
- 引言
- 相关研究
- 问题描述
- 所提好友推荐方法
- 实验验证
- 结论
摘要
社交网络中快速增长的用户对现有好友推荐系统提出了挑战。本文我们用张量分解模型基于用户的标签行为信息提出了一种新的推荐框架,解决社交网络中的好友推荐问题。该研究有两个主要贡献:(1)提出了一种新的张量模型来刻画社会化标签系统中用户、用户兴趣和朋友之间的潜在关联;(2)基于上述模型提出了一种新的好友推荐方法。在一个真实数据集上的实验表明所提算法由于当前最优算法。
引言
随着互联网上用户和电子媒体资源(音乐、照片和视频)的爆炸式增长,大量社交网络如Last.fm和Flickr已经使用社会化标签系统来组织大量数据。社会化标签系统允许用户使用他们最喜欢的词称作Tag来标记网上的资源。标签不仅仅可以完善那些难以直接抽取的多媒体数据的元信息,还可以表征用户的兴趣[1]。另一方面,用户想要找到有着相似兴趣的人,如Last.fm中的好友或者是Flickr中的联系人。但是现有好友推荐系统的结果常常不能让人满意。为一个用户找到新的合适的朋友,特别是在快速增长的社交网络中不是一件容易的事。解决该问题会有两个重要意义:首先,它帮助用户找到了新的有趣的多媒体资源。其次,这种推荐服务鼓励有着相似兴趣的用户之间的交流,提高了用户满意度,这也意味着网站更高的广告收益。
本文我们提出一种新的基于张量分解模型来进行用户推荐任务。所提框架包括三个阶段:(a)用张量分解模型构建用户-兴趣-朋友模型;(b)学习最优的模型参数;(c)为用户的新好友进行排序推荐。本文的贡献如下:(1)我们提出一种新的张量分解模型来刻画用户、用户兴趣和朋友之间的潜在关联;(2)基于该模型,我们提出一种新的方法为用户推荐有着相似兴趣的用户作为新朋友。
本文剩余部分结构如下。第二节我们综述了之前的相关工作。在第三节我们形式化定义了问题。我们在第四节介绍了用于好友推荐的框架。在第五节,我们用实验将所提方法与当前最优算法进行了比较。最后在第六节得出了结论
相关工作
到目前为止,社会化标签系统中已经提出了多种好友推荐方法[3]。大量现有的推荐系统是基于协同过滤的方法[4,5],它们广泛应用于Amazon和MovieLens中。此外,Google Follower Finder采用了一种基于社交图的方法[6]。这种方法仅仅利用社交图上的链接信息,基于用户的共同好友来预测新的好友。最近,Zhou[2]提出了一个社会化标签系统的两阶段框架(UR)。这种方法用标签来代表用户的兴趣,基于他们兴趣的
问题描述
通常一个社会化标签系统由实体(用户、标签和资源)和实体之间的关系(如用户之间的友谊)组成。我们定义虽有用户集合
给定一个用户
其中上标N表示的是推荐的用户数目。
所提好友推荐方法
基于张量分解的用户-兴趣-好友模型
之前的研究工作表明社会化标签可以表征用户在Web上的兴趣[1]。因此我们提出如下假设。
假设1. 用户的标签表征用户的兴趣。
在此假设下,我们可以将
假设2. 用户与其他有着相似兴趣的人交友。
结合假设1和2,我们可以构建一个三维张量集合以对用户,用户的兴趣和好友之间的关联进行建模,如命题1所述。
命题1.
一个三维张量

todropaviewInmySQL,使用“ dropviewifexistsview_name;” andTomodifyAview,使用“ createOrreplaceViewViewViewview_nameAsSelect ...”。 whendroppingaview,asew dectivectenciesanduse和showcreateateviewViewview_name;“ tounderStanditSsstructure.whenModifying

mySqlViewScaneFectectialized unizedesignpatternslikeadapter,Decorator,Factory,andObserver.1)adapterPatternadaptSdataForomDifferentTablesIntoAunifiendView.2)decoratorPatternenhancateDataWithCalcalcualdCalcalculenfields.3)fieldfields.3)

查看InMysqlareBeneForsImplifyingComplexqueries,增強安全性,確保dataConsistency,andOptimizingPerformance.1)他們simimplifycomplexqueriesbleiesbyEncapsbyEnculatingThemintoreusableviews.2)viewsEnenenhancesecuritybyControllityByControllingDataAcces.3)

toCreateAsimpleViewInmySQL,USEthecReateaTeviewStatement.1)defitEtheetEtheTeViewWithCreatEaTeviewView_nameas.2)指定usethectstatementTorivedesireddata.3)usethectStatementTorivedesireddata.3)usetheviewlikeatlikeatlikeatlikeatlikeatlikeatable.views.viewssimplplifefifydataaccessandenenanceberity but consisterfort,butconserfort,consoncontorfinft

1)foralocaluser:createUser'localuser'@'@'localhost'Indidendify'securepassword'; 2)foraremoteuser:creationuser's creationuser'Remoteer'Remoteer'Remoteer'Remoteer'Remoteer'Remoteer'Remoteer'Remoteer'Rocaluser'@'localhost'Indidendify'seceledify'Securepassword'; 2)

mysqlviewshavelimitations:1)他們不使用Supportallsqloperations,限制DatamanipulationThroughViewSwithJoinsOrsubqueries.2)他們canimpactperformance,尤其是withcomplexcomplexclexeriesorlargedatasets.3)

porthusermanagementinmysqliscialforenhancingsEcurityAndsingsmenting效率databaseoperation.1)usecReateusertoAddusers,指定connectionsourcewith@'localhost'or@'%'。

mysqldoes notimposeahardlimitontriggers,butacticalfactorsdeterminetheireffactective:1)serverConfiguration impactactStriggerGermanagement; 2)複雜的TriggerSincreaseSySystemsystem load; 3)largertablesslowtriggerperfermance; 4)highConconcConcrencerCancancancancanceTigrignecentign; 5); 5)


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。