搜尋
首頁資料庫mysql教程Hive分析窗口函数(四) LAG,LEAD,FIRST_VALUE,LAST_VALUE

1.LAG功能是什么? 2.LEAD与LAG功能有什么相的地方那个? 3.FIRST_VALUE与LAST_VALUE分别完成什么功能? 继续学习这四个分析函数。注意: 这几个函数不支持WINDOW子句。 Hive版本为 apache-hive-0.13.1 数据准备: 水电费 cookie1,2015-04-10 10:00:02,url2

1.LAG功能是什么?
2.LEAD与LAG功能有什么相似的地方那个?

3.FIRST_VALUE与LAST_VALUE分别完成什么功能?


继续学习这四个分析函数。 注意: 这几个函数不支持WINDOW子句。 Hive版本为 apache-hive-0.13.1 数据准备:

水电费

    cookie1,2015-04-10 10:00:02,url2
    cookie1,2015-04-10 10:00:00,url1
    cookie1,2015-04-10 10:03:04,1url3
    cookie1,2015-04-10 10:50:05,url6
    cookie1,2015-04-10 11:00:00,url7
    cookie1,2015-04-10 10:10:00,url4
    cookie1,2015-04-10 10:50:01,url5
    cookie2,2015-04-10 10:00:02,url22
    cookie2,2015-04-10 10:00:00,url11
    cookie2,2015-04-10 10:03:04,1url33
    cookie2,2015-04-10 10:50:05,url66
    cookie2,2015-04-10 11:00:00,url77
    cookie2,2015-04-10 10:10:00,url44
    cookie2,2015-04-10 10:50:01,url55

    CREATE EXTERNAL TABLE lxw1234 (
    cookieid string,
    createtime string,  --页面访问时间
    url STRING       --被访问页面
    ) ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    stored as textfile location '/tmp/lxw11/';


    hive> select * from lxw1234;
    OK
    cookie1 2015-04-10 10:00:02     url2
    cookie1 2015-04-10 10:00:00     url1
    cookie1 2015-04-10 10:03:04     1url3
    cookie1 2015-04-10 10:50:05     url6
    cookie1 2015-04-10 11:00:00     url7
    cookie1 2015-04-10 10:10:00     url4
    cookie1 2015-04-10 10:50:01     url5
    cookie2 2015-04-10 10:00:02     url22
    cookie2 2015-04-10 10:00:00     url11
    cookie2 2015-04-10 10:03:04     1url33
    cookie2 2015-04-10 10:50:05     url66
    cookie2 2015-04-10 11:00:00     url77
    cookie2 2015-04-10 10:10:00     url44
    cookie2 2015-04-10 10:50:01     url55
LAG

LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值
第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

    SELECT cookieid,
    createtime,
    url,
    ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
    LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time,
    LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time
    FROM lxw1234;


    cookieid createtime             url    rn       last_1_time             last_2_time
    -------------------------------------------------------------------------------------------
    cookie1 2015-04-10 10:00:00     url1    1       1970-01-01 00:00:00     NULL
    cookie1 2015-04-10 10:00:02     url2    2       2015-04-10 10:00:00     NULL
    cookie1 2015-04-10 10:03:04     1url3   3       2015-04-10 10:00:02     2015-04-10 10:00:00
    cookie1 2015-04-10 10:10:00     url4    4       2015-04-10 10:03:04     2015-04-10 10:00:02
    cookie1 2015-04-10 10:50:01     url5    5       2015-04-10 10:10:00     2015-04-10 10:03:04
    cookie1 2015-04-10 10:50:05     url6    6       2015-04-10 10:50:01     2015-04-10 10:10:00
    cookie1 2015-04-10 11:00:00     url7    7       2015-04-10 10:50:05     2015-04-10 10:50:01
    cookie2 2015-04-10 10:00:00     url11   1       1970-01-01 00:00:00     NULL
    cookie2 2015-04-10 10:00:02     url22   2       2015-04-10 10:00:00     NULL
    cookie2 2015-04-10 10:03:04     1url33  3       2015-04-10 10:00:02     2015-04-10 10:00:00
    cookie2 2015-04-10 10:10:00     url44   4       2015-04-10 10:03:04     2015-04-10 10:00:02
    cookie2 2015-04-10 10:50:01     url55   5       2015-04-10 10:10:00     2015-04-10 10:03:04
    cookie2 2015-04-10 10:50:05     url66   6       2015-04-10 10:50:01     2015-04-10 10:10:00
    cookie2 2015-04-10 11:00:00     url77   7       2015-04-10 10:50:05     2015-04-10 10:50:01


    last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00'  
                 cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00
                 cookie1第三行,往上1行值为第二行值,2015-04-10 10:00:02
                 cookie1第六行,往上1行值为第五行值,2015-04-10 10:50:01
    last_2_time: 指定了往上第2行的值,为指定默认值
                                                     cookie1第一行,往上2行为NULL
                                                     cookie1第二行,往上2行为NULL
                                                     cookie1第四行,往上2行为第二行值,2015-04-10 10:00:02
                                                     cookie1第七行,往上2行为第五行值,2015-04-10 10:50:01

LEAD

与LAG相反
LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值
第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)

    SELECT cookieid,
    createtime,
    url,
    ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
    LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time,
    LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time
    FROM lxw1234;


    cookieid createtime             url    rn       next_1_time             next_2_time
    -------------------------------------------------------------------------------------------
    cookie1 2015-04-10 10:00:00     url1    1       2015-04-10 10:00:02     2015-04-10 10:03:04
    cookie1 2015-04-10 10:00:02     url2    2       2015-04-10 10:03:04     2015-04-10 10:10:00
    cookie1 2015-04-10 10:03:04     1url3   3       2015-04-10 10:10:00     2015-04-10 10:50:01
    cookie1 2015-04-10 10:10:00     url4    4       2015-04-10 10:50:01     2015-04-10 10:50:05
    cookie1 2015-04-10 10:50:01     url5    5       2015-04-10 10:50:05     2015-04-10 11:00:00
    cookie1 2015-04-10 10:50:05     url6    6       2015-04-10 11:00:00     NULL
    cookie1 2015-04-10 11:00:00     url7    7       1970-01-01 00:00:00     NULL
    cookie2 2015-04-10 10:00:00     url11   1       2015-04-10 10:00:02     2015-04-10 10:03:04
    cookie2 2015-04-10 10:00:02     url22   2       2015-04-10 10:03:04     2015-04-10 10:10:00
    cookie2 2015-04-10 10:03:04     1url33  3       2015-04-10 10:10:00     2015-04-10 10:50:01
    cookie2 2015-04-10 10:10:00     url44   4       2015-04-10 10:50:01     2015-04-10 10:50:05
    cookie2 2015-04-10 10:50:01     url55   5       2015-04-10 10:50:05     2015-04-10 11:00:00
    cookie2 2015-04-10 10:50:05     url66   6       2015-04-10 11:00:00     NULL
    cookie2 2015-04-10 11:00:00     url77   7       1970-01-01 00:00:00     NULL

    --逻辑与LAG一样,只不过LAG是往上,LEAD是往下。

FIRST_VALUE

取分组内排序后,截止到当前行,第一个值

    SELECT cookieid,
    createtime,
    url,
    ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
    FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1
    FROM lxw1234;

    cookieid  createtime            url     rn      first1
    ---------------------------------------------------------
    cookie1 2015-04-10 10:00:00     url1    1       url1
    cookie1 2015-04-10 10:00:02     url2    2       url1
    cookie1 2015-04-10 10:03:04     1url3   3       url1
    cookie1 2015-04-10 10:10:00     url4    4       url1
    cookie1 2015-04-10 10:50:01     url5    5       url1
    cookie1 2015-04-10 10:50:05     url6    6       url1
    cookie1 2015-04-10 11:00:00     url7    7       url1
    cookie2 2015-04-10 10:00:00     url11   1       url11
    cookie2 2015-04-10 10:00:02     url22   2       url11
    cookie2 2015-04-10 10:03:04     1url33  3       url11
    cookie2 2015-04-10 10:10:00     url44   4       url11
    cookie2 2015-04-10 10:50:01     url55   5       url11
    cookie2 2015-04-10 10:50:05     url66   6       url11
    cookie2 2015-04-10 11:00:00     url77   7       url11

LAST_VALUE

取分组内排序后,截止到当前行,最后一个值


    SELECT cookieid,
    createtime,
    url,
    ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
    LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1
    FROM lxw1234;


    cookieid  createtime            url    rn       last1  
    -----------------------------------------------------------------
    cookie1 2015-04-10 10:00:00     url1    1       url1
    cookie1 2015-04-10 10:00:02     url2    2       url2
    cookie1 2015-04-10 10:03:04     1url3   3       1url3
    cookie1 2015-04-10 10:10:00     url4    4       url4
    cookie1 2015-04-10 10:50:01     url5    5       url5
    cookie1 2015-04-10 10:50:05     url6    6       url6
    cookie1 2015-04-10 11:00:00     url7    7       url7
    cookie2 2015-04-10 10:00:00     url11   1       url11
    cookie2 2015-04-10 10:00:02     url22   2       url22
    cookie2 2015-04-10 10:03:04     1url33  3       1url33
    cookie2 2015-04-10 10:10:00     url44   4       url44
    cookie2 2015-04-10 10:50:01     url55   5       url55
    cookie2 2015-04-10 10:50:05     url66   6       url66
    cookie2 2015-04-10 11:00:00     url77   7       url77

如果不指定ORDER BY,则默认按照记录在文件中的偏移量进行排序,会出现错误的结果

    SELECT cookieid,
    createtime,
    url,
    FIRST_VALUE(url) OVER(PARTITION BY cookieid) AS first2  
    FROM lxw1234;

    cookieid  createtime            url     first2
    ----------------------------------------------
    cookie1 2015-04-10 10:00:02     url2    url2
    cookie1 2015-04-10 10:00:00     url1    url2
    cookie1 2015-04-10 10:03:04     1url3   url2
    cookie1 2015-04-10 10:50:05     url6    url2
    cookie1 2015-04-10 11:00:00     url7    url2
    cookie1 2015-04-10 10:10:00     url4    url2
    cookie1 2015-04-10 10:50:01     url5    url2
    cookie2 2015-04-10 10:00:02     url22   url22
    cookie2 2015-04-10 10:00:00     url11   url22
    cookie2 2015-04-10 10:03:04     1url33  url22
    cookie2 2015-04-10 10:50:05     url66   url22
    cookie2 2015-04-10 11:00:00     url77   url22
    cookie2 2015-04-10 10:10:00     url44   url22
    cookie2 2015-04-10 10:50:01     url55   url22

    SELECT cookieid,
    createtime,
    url,
    LAST_VALUE(url) OVER(PARTITION BY cookieid) AS last2  
    FROM lxw1234;

    cookieid  createtime            url     last2
    ----------------------------------------------
    cookie1 2015-04-10 10:00:02     url2    url5
    cookie1 2015-04-10 10:00:00     url1    url5
    cookie1 2015-04-10 10:03:04     1url3   url5
    cookie1 2015-04-10 10:50:05     url6    url5
    cookie1 2015-04-10 11:00:00     url7    url5
    cookie1 2015-04-10 10:10:00     url4    url5
    cookie1 2015-04-10 10:50:01     url5    url5
    cookie2 2015-04-10 10:00:02     url22   url55
    cookie2 2015-04-10 10:00:00     url11   url55
    cookie2 2015-04-10 10:03:04     1url33  url55
    cookie2 2015-04-10 10:50:05     url66   url55
    cookie2 2015-04-10 11:00:00     url77   url55
    cookie2 2015-04-10 10:10:00     url44   url55
    cookie2 2015-04-10 10:50:01     url55   url55

如果想要取分组内排序后最后一个值,则需要变通一下:

    SELECT cookieid,
    createtime,
    url,
    ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
    LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1,
    FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2
    FROM lxw1234
    ORDER BY cookieid,createtime;

    cookieid  createtime            url     rn     last1    last2
    -------------------------------------------------------------
    cookie1 2015-04-10 10:00:00     url1    1       url1    url7
    cookie1 2015-04-10 10:00:02     url2    2       url2    url7
    cookie1 2015-04-10 10:03:04     1url3   3       1url3   url7
    cookie1 2015-04-10 10:10:00     url4    4       url4    url7
    cookie1 2015-04-10 10:50:01     url5    5       url5    url7
    cookie1 2015-04-10 10:50:05     url6    6       url6    url7
    cookie1 2015-04-10 11:00:00     url7    7       url7    url7
    cookie2 2015-04-10 10:00:00     url11   1       url11   url77
    cookie2 2015-04-10 10:00:02     url22   2       url22   url77
    cookie2 2015-04-10 10:03:04     1url33  3       1url33  url77
    cookie2 2015-04-10 10:10:00     url44   4       url44   url77
    cookie2 2015-04-10 10:50:01     url55   5       url55   url77
    cookie2 2015-04-10 10:50:05     url66   6       url66   url77
    cookie2 2015-04-10 11:00:00     url77   7       url77   url77



陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
如何識別和優化MySQL中的慢速查詢? (慢查詢日誌,performance_schema)如何識別和優化MySQL中的慢速查詢? (慢查詢日誌,performance_schema)Apr 10, 2025 am 09:36 AM

要優化MySQL慢查詢,需使用slowquerylog和performance_schema:1.啟用slowquerylog並設置閾值,記錄慢查詢;2.利用performance_schema分析查詢執行細節,找出性能瓶頸並優化。

MySQL和SQL:開發人員的基本技能MySQL和SQL:開發人員的基本技能Apr 10, 2025 am 09:30 AM

MySQL和SQL是開發者必備技能。 1.MySQL是開源的關係型數據庫管理系統,SQL是用於管理和操作數據庫的標準語言。 2.MySQL通過高效的數據存儲和檢索功能支持多種存儲引擎,SQL通過簡單語句完成複雜數據操作。 3.使用示例包括基本查詢和高級查詢,如按條件過濾和排序。 4.常見錯誤包括語法錯誤和性能問題,可通過檢查SQL語句和使用EXPLAIN命令優化。 5.性能優化技巧包括使用索引、避免全表掃描、優化JOIN操作和提升代碼可讀性。

描述MySQL異步主奴隸複製過程。描述MySQL異步主奴隸複製過程。Apr 10, 2025 am 09:30 AM

MySQL異步主從復制通過binlog實現數據同步,提升讀性能和高可用性。 1)主服務器記錄變更到binlog;2)從服務器通過I/O線程讀取binlog;3)從服務器的SQL線程應用binlog同步數據。

mysql:簡單的概念,用於輕鬆學習mysql:簡單的概念,用於輕鬆學習Apr 10, 2025 am 09:29 AM

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

MySQL:數據庫的用戶友好介紹MySQL:數據庫的用戶友好介紹Apr 10, 2025 am 09:27 AM

MySQL的安裝和基本操作包括:1.下載並安裝MySQL,設置根用戶密碼;2.使用SQL命令創建數據庫和表,如CREATEDATABASE和CREATETABLE;3.執行CRUD操作,使用INSERT,SELECT,UPDATE,DELETE命令;4.創建索引和存儲過程以優化性能和實現複雜邏輯。通過這些步驟,你可以從零開始構建和管理MySQL數據庫。

InnoDB緩衝池如何工作,為什麼對性能至關重要?InnoDB緩衝池如何工作,為什麼對性能至關重要?Apr 09, 2025 am 12:12 AM

InnoDBBufferPool通過將數據和索引頁加載到內存中來提升MySQL數據庫的性能。 1)數據頁加載到BufferPool中,減少磁盤I/O。 2)臟頁被標記並定期刷新到磁盤。 3)LRU算法管理數據頁淘汰。 4)預讀機制提前加載可能需要的數據頁。

MySQL:初學者的數據管理易用性MySQL:初學者的數據管理易用性Apr 09, 2025 am 12:07 AM

MySQL適合初學者使用,因為它安裝簡單、功能強大且易於管理數據。 1.安裝和配置簡單,適用於多種操作系統。 2.支持基本操作如創建數據庫和表、插入、查詢、更新和刪除數據。 3.提供高級功能如JOIN操作和子查詢。 4.可以通過索引、查詢優化和分錶分區來提升性能。 5.支持備份、恢復和安全措施,確保數據的安全和一致性。

與MySQL中使用索引相比,全表掃描何時可以更快?與MySQL中使用索引相比,全表掃描何時可以更快?Apr 09, 2025 am 12:05 AM

全表掃描在MySQL中可能比使用索引更快,具體情況包括:1)數據量較小時;2)查詢返回大量數據時;3)索引列不具備高選擇性時;4)複雜查詢時。通過分析查詢計劃、優化索引、避免過度索引和定期維護表,可以在實際應用中做出最優選擇。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。