返回Java 集合......登陆

Java 集合系列11之 Hashtable详细介绍

阿神2016-11-08 13:57:35448

概要

前一章,我们学习了HashMap。这一章,我们对Hashtable进行学习。

我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable。

第1部分 Hashtable介绍

第2部分 Hashtable数据结构

第3部分 Hashtable源码解析(基于JDK1.6.0_45)

第4部分 Hashtable遍历方式

第5部分 Hashtable示例

第1部分 Hashtable介绍

Hashtable 简介

和HashMap一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射。

Hashtable 继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。

Hashtable 的函数都是同步的,这意味着它是线程安全的。它的key、value都不可以为null。此外,Hashtable中的映射不是有序的。

Hashtable 的实例有两个参数影响其性能:初始容量 和 加载因子。容量 是哈希表中桶 的数量,初始容量 就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用 rehash 方法的具体细节则依赖于该实现。

通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间(在大多数 Hashtable 操作中,包括 get 和 put 操作,都反映了这一点)

Hashtable的构造函数

// 默认构造函数。
public Hashtable() 
// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity) 
// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor) 
// 包含“子Map”的构造函数
public Hashtable(Map<? extends K, ? extends V> t)

Hashtable的API

synchronized void                clear()
synchronized Object              clone()
             boolean             contains(Object value)
synchronized boolean             containsKey(Object key)
synchronized boolean             containsValue(Object value)
synchronized Enumeration<V>      elements()
synchronized Set<Entry<K, V>>    entrySet()
synchronized boolean             equals(Object object)
synchronized V                   get(Object key)
synchronized int                 hashCode()
synchronized boolean             isEmpty()
synchronized Set<K>              keySet()
synchronized Enumeration<K>      keys()
synchronized V                   put(K key, V value)
synchronized void                putAll(Map<? extends K, ? extends V> map)
synchronized V                   remove(Object key)
synchronized int                 size()
synchronized String              toString()
synchronized Collection<V>       values()

第2部分 Hashtable数据结构

Hashtable的继承关系

java.lang.Object
      java.util.Dictionary<K, V>
              java.util.Hashtable<K, V>
public class Hashtable<K,V> extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable { }

 Hashtable与Map关系如下图:

10.jpg

从图中可以看出: 

(01) Hashtable继承于Dictionary类,实现了Map接口。Map是"key-value键值对"接口,Dictionary是声明了操作"键值对"函数接口的抽象类。 

(02) Hashtable是通过"拉链法"实现的哈希表。它包括几个重要的成员变量:table, count, threshold, loadFactor, modCount。

  table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的"key-value键值对"都是存储在Entry数组中的。 

  count是Hashtable的大小,它是Hashtable保存的键值对的数量。 

  threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值="容量*加载因子"。

  loadFactor就是加载因子。 

  modCount是用来实现fail-fast机制

第3部分 Hashtable源码解析(基于JDK1.6.0_45)

为了更了解Hashtable的原理,下面对Hashtable源码代码作出分析。

在阅读源码时,建议参考后面的说明来建立对Hashtable的整体认识,这样更容易理解Hashtable。

package java.util;
import java.io.*;

public class Hashtable<K,V>
    extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable {

    // Hashtable保存key-value的数组。
    // Hashtable是采用拉链法实现的,每一个Entry本质上是一个单向链表
    private transient Entry[] table;

    // Hashtable中元素的实际数量
    private transient int count;

    // 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)
    private int threshold;

    // 加载因子
    private float loadFactor;

    // Hashtable被改变的次数
    private transient int modCount = 0;

    // 序列版本号
    private static final long serialVersionUID = 1421746759512286392L;

    // 指定“容量大小”和“加载因子”的构造函数
    public Hashtable(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal Load: "+loadFactor);

        if (initialCapacity==0)
            initialCapacity = 1;
        this.loadFactor = loadFactor;
        table = new Entry[initialCapacity];
        threshold = (int)(initialCapacity * loadFactor);
    }

    // 指定“容量大小”的构造函数
    public Hashtable(int initialCapacity) {
        this(initialCapacity, 0.75f);
    }

    // 默认构造函数。
    public Hashtable() {
        // 默认构造函数,指定的容量大小是11;加载因子是0.75
        this(11, 0.75f);
    }

    // 包含“子Map”的构造函数
    public Hashtable(Map<? extends K, ? extends V> t) {
        this(Math.max(2*t.size(), 11), 0.75f);
        // 将“子Map”的全部元素都添加到Hashtable中
        putAll(t);
    }

    public synchronized int size() {
        return count;
    }

    public synchronized boolean isEmpty() {
        return count == 0;
    }

    // 返回“所有key”的枚举对象
    public synchronized Enumeration<K> keys() {
        return this.<K>getEnumeration(KEYS);
    }

    // 返回“所有value”的枚举对象
    public synchronized Enumeration<V> elements() {
        return this.<V>getEnumeration(VALUES);
    }

    // 判断Hashtable是否包含“值(value)”
    public synchronized boolean contains(Object value) {
        // Hashtable中“键值对”的value不能是null,
        // 若是null的话,抛出异常!
        if (value == null) {
            throw new NullPointerException();
        }

        // 从后向前遍历table数组中的元素(Entry)
        // 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
        Entry tab[] = table;
        for (int i = tab.length ; i-- > 0 ;) {
            for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
                if (e.value.equals(value)) {
                    return true;
                }
            }
        }
        return false;
    }

    public boolean containsValue(Object value) {
        return contains(value);
    }

    // 判断Hashtable是否包含key
    public synchronized boolean containsKey(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        // 计算索引值,
        // % tab.length 的目的是防止数据越界
        int index = (hash & 0x7FFFFFFF) % tab.length;
        // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return true;
            }
        }
        return false;
    }

    // 返回key对应的value,没有的话返回null
    public synchronized V get(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        // 计算索引值,
        int index = (hash & 0x7FFFFFFF) % tab.length;
        // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return e.value;
            }
        }
        return null;
    }

    // 调整Hashtable的长度,将长度变成原来的(2倍+1)
    // (01) 将“旧的Entry数组”赋值给一个临时变量。
    // (02) 创建一个“新的Entry数组”,并赋值给“旧的Entry数组”
    // (03) 将“Hashtable”中的全部元素依次添加到“新的Entry数组”中
    protected void rehash() {
        int oldCapacity = table.length;
        Entry[] oldMap = table;

        int newCapacity = oldCapacity * 2 + 1;
        Entry[] newMap = new Entry[newCapacity];

        modCount++;
        threshold = (int)(newCapacity * loadFactor);
        table = newMap;

        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;

                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = newMap[index];
                newMap[index] = e;
            }
        }
    }

    // 将“key-value”添加到Hashtable中
    public synchronized V put(K key, V value) {
        // Hashtable中不能插入value为null的元素!!!
        if (value == null) {
            throw new NullPointerException();
        }

        // 若“Hashtable中已存在键为key的键值对”,
        // 则用“新的value”替换“旧的value”
        Entry tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                V old = e.value;
                e.value = value;
                return old;
                }
        }

        // 若“Hashtable中不存在键为key的键值对”,
        // (01) 将“修改统计数”+1
        modCount++;
        // (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)
        //  则调整Hashtable的大小
        if (count >= threshold) {
            // Rehash the table if the threshold is exceeded
            rehash();

            tab = table;
            index = (hash & 0x7FFFFFFF) % tab.length;
        }

        // (03) 将“Hashtable中index”位置的Entry(链表)保存到e中
        Entry<K,V> e = tab[index];
        // (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。        
        tab[index] = new Entry<K,V>(hash, key, value, e);
        // (05) 将“Hashtable的实际容量”+1
        count++;
        return null;
    }

    // 删除Hashtable中键为key的元素
    public synchronized V remove(Object key) {
        Entry tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        // 找到“key对应的Entry(链表)”
        // 然后在链表中找出要删除的节点,并删除该节点。
        for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                modCount++;
                if (prev != null) {
                    prev.next = e.next;
                } else {
                    tab[index] = e.next;
                }
                count--;
                V oldValue = e.value;
                e.value = null;
                return oldValue;
            }
        }
        return null;
    }

    // 将“Map(t)”的中全部元素逐一添加到Hashtable中
    public synchronized void putAll(Map<? extends K, ? extends V> t) {
        for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
            put(e.getKey(), e.getValue());
    }

    // 清空Hashtable
    // 将Hashtable的table数组的值全部设为null
    public synchronized void clear() {
        Entry tab[] = table;
        modCount++;
        for (int index = tab.length; --index >= 0; )
            tab[index] = null;
        count = 0;
    }

    // 克隆一个Hashtable,并以Object的形式返回。
    public synchronized Object clone() {
        try {
            Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
            t.table = new Entry[table.length];
            for (int i = table.length ; i-- > 0 ; ) {
                t.table[i] = (table[i] != null)
                ? (Entry<K,V>) table[i].clone() : null;
            }
            t.keySet = null;
            t.entrySet = null;
            t.values = null;
            t.modCount = 0;
            return t;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError();
        }
    }

    public synchronized String toString() {
        int max = size() - 1;
        if (max == -1)
            return "{}";

        StringBuilder sb = new StringBuilder();
        Iterator<Map.Entry<K,V>> it = entrySet().iterator();

        sb.append('{');
        for (int i = 0; ; i++) {
            Map.Entry<K,V> e = it.next();
            K key = e.getKey();
            V value = e.getValue();
            sb.append(key   == this ? "(this Map)" : key.toString());
            sb.append('=');
            sb.append(value == this ? "(this Map)" : value.toString());

            if (i == max)
                return sb.append('}').toString();
            sb.append(", ");
        }
    }

    // 获取Hashtable的枚举类对象
    // 若Hashtable的实际大小为0,则返回“空枚举类”对象;
    // 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
    private <T> Enumeration<T> getEnumeration(int type) {
    if (count == 0) {
        return (Enumeration<T>)emptyEnumerator;
    } else {
        return new Enumerator<T>(type, false);
    }
    }

    // 获取Hashtable的迭代器
    // 若Hashtable的实际大小为0,则返回“空迭代器”对象;
    // 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
    private <T> Iterator<T> getIterator(int type) {
        if (count == 0) {
            return (Iterator<T>) emptyIterator;
        } else {
            return new Enumerator<T>(type, true);
        }
    }

    // Hashtable的“key的集合”。它是一个Set,意味着没有重复元素
    private transient volatile Set<K> keySet = null;
    // Hashtable的“key-value的集合”。它是一个Set,意味着没有重复元素
    private transient volatile Set<Map.Entry<K,V>> entrySet = null;
    // Hashtable的“key-value的集合”。它是一个Collection,意味着可以有重复元素
    private transient volatile Collection<V> values = null;

    // 返回一个被synchronizedSet封装后的KeySet对象
    // synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步
    public Set<K> keySet() {
        if (keySet == null)
            keySet = Collections.synchronizedSet(new KeySet(), this);
        return keySet;
    }

    // Hashtable的Key的Set集合。
    // KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。
    private class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return getIterator(KEYS);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return Hashtable.this.remove(o) != null;
        }
        public void clear() {
            Hashtable.this.clear();
        }
    }

    // 返回一个被synchronizedSet封装后的EntrySet对象
    // synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步
    public Set<Map.Entry<K,V>> entrySet() {
        if (entrySet==null)
            entrySet = Collections.synchronizedSet(new EntrySet(), this);
        return entrySet;
    }

    // Hashtable的Entry的Set集合。
    // EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。
    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return getIterator(ENTRIES);
        }

        public boolean add(Map.Entry<K,V> o) {
            return super.add(o);
        }

        // 查找EntrySet中是否包含Object(0)
        // 首先,在table中找到o对应的Entry(Entry是一个单向链表)
        // 然后,查找Entry链表中是否存在Object
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry entry = (Map.Entry)o;
            Object key = entry.getKey();
            Entry[] tab = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;

            for (Entry e = tab[index]; e != null; e = e.next)
                if (e.hash==hash && e.equals(entry))
                    return true;
            return false;
        }

        // 删除元素Object(0)
        // 首先,在table中找到o对应的Entry(Entry是一个单向链表)
        // 然后,删除链表中的元素Object
        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
            K key = entry.getKey();
            Entry[] tab = table;
            int hash = key.hashCode();
            int index = (hash & 0x7FFFFFFF) % tab.length;

            for (Entry<K,V> e = tab[index], prev = null; e != null;
                 prev = e, e = e.next) {
                if (e.hash==hash && e.equals(entry)) {
                    modCount++;
                    if (prev != null)
                        prev.next = e.next;
                    else
                        tab[index] = e.next;

                    count--;
                    e.value = null;
                    return true;
                }
            }
            return false;
        }

        public int size() {
            return count;
        }

        public void clear() {
            Hashtable.this.clear();
        }
    }

    // 返回一个被synchronizedCollection封装后的ValueCollection对象
    // synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步
    public Collection<V> values() {
    if (values==null)
        values = Collections.synchronizedCollection(new ValueCollection(),
                                                        this);
        return values;
    }

    // Hashtable的value的Collection集合。
    // ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。
    private class ValueCollection extends AbstractCollection<V> {
        public Iterator<V> iterator() {
        return getIterator(VALUES);
        }
        public int size() {
            return count;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public void clear() {
            Hashtable.this.clear();
        }
    }

    // 重新equals()函数
    // 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等
    public synchronized boolean equals(Object o) {
        if (o == this)
            return true;

        if (!(o instanceof Map))
            return false;
      &am

最新手记推荐

• 用composer安装thinkphp框架的步骤• 省市区接口说明• 用thinkphp,后台新增栏目• 管理员添加编辑删除• 管理员添加编辑删除

全部回复(0)我要回复

暂无评论~
  • 取消回复发送