阿神2017-04-18 10:58:30
The simplest thing is to exhaustively enumerate the arrangements of 9 numbers.
Optimization is to eliminate some impossible situations first. For example, the middle number is a multiple of 2, and the last number is a multiple of 3. And so on.
高洛峰2017-04-18 10:58:30
public class Sidney {
public static void main(String[] args) {
int[] s = new int[9];
for (int i = 300; i < 999; i+=3) {
int flag = 1;
Set<Integer> set = new HashSet<>();
int a = i / 3;
int b = (i / 3) * 2;
s[0]=a%10;s[1]=a%100/10;s[2]=a/100;
s[3]=b%10;s[4]=b%100/10;s[5]=b/100;
s[6]=i%10;s[7]=i%100/10;s[8]=i/100;
for (int i1 : s) {
if (!set.add(i1) || i1 == 0) {
flag = 0;
break;
}
}
if (flag == 1) {
System.out.println(a + "\t" + b + "\t" + i);
}
}
}
}
迷茫2017-04-18 10:58:30
Liu Rujia’s question.
Enumerate the first number, which is the number accounting for 1 in 1:2:3.
The enumeration range is 123~345. Based on this number, calculate the other two numbers, and then determine whether exactly 9 numbers are used.
大家讲道理2017-04-18 10:58:30
The idea is very simple. Since you want the ratio to be 1:2:3 and each number needs to be used once, then directly enlarge 1, 2, and 3 x times, and then determine whether each number appears only once. 1 requires less than 100 times of magnification to reach 3 digits, so just start from 123. code show as below.
int testa()
{
int a=1,b=2,c =3;
char szA[10]={0},szB[4]={0},szC[4]={0},cTag[10]={0};
for(int i=123;i<=333;i++)
{
memset(szA,0x00,10);memset(szB,0x00,4);memset(szC,0x00,4);memset(cTag,0x00,10);
sprintf_s(szA,"%d",a*i);sprintf_s(szB,"%d",b*i);sprintf_s(szC,"%d",c*i);
strcat_s(szA,szB);strcat_s(szA,szC);
int j=0;
for(j=0;j<9;j++)
{
if(cTag[szA[j]-'1']!=0)
break;
cTag[szA[j]-'1']=1;
}
if(j==9)
printf("%s\n",szA);
}
return 0;
}