How to replace the mnist data set in the following code with TFRecord
Assume that the TFRecord data set has been prepared, train.tfrecords
and test.tfrecords
are both in the current py directory
There is already a TFRecord reading code.
def read_and_decode(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw': tf.FixedLenFeature([], tf.string),
})
img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [512, 288, 3])
img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
label = tf.cast(features['label'], tf.int32)
return img, label
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("/tmp/tensorflow/mnist/input_data", one_hot=True)
# Parameters
learning_rate = 0.001
training_iters = 200000
batch_size = 64
display_step = 20
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
# Create custom model
def conv2d(name, l_input, w, b):
return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'), b), name=name)
def max_pool(name, l_input, k):
return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name)
def norm(name, l_input, lsize=4):
return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
def dnn(_x, _weights, _biases, _dropout):
_x = tf.nn.dropout(_x, _dropout)
d1 = tf.nn.relu(tf.nn.bias_add(tf.matmul(_x, _weights['wd1']), _biases['bd1']), name="d1")
d2x = tf.nn.dropout(d1, _dropout)
d2 = tf.nn.relu(tf.nn.bias_add(tf.matmul(d2x, _weights['wd2']), _biases['bd2']), name="d2")
dout = tf.nn.dropout(d2, _dropout)
out = tf.matmul(dout, _weights['out']) + _biases['out']
return out
# Store layers weight & bias
weights = {
'wd1': tf.Variable(tf.random_normal([784, 600], stddev=0.01)),
'wd2': tf.Variable(tf.random_normal([600, 480], stddev=0.01)),
'out': tf.Variable(tf.random_normal([480, 10]))
}
biases = {
'bd1': tf.Variable(tf.random_normal([600])),
'bd2': tf.Variable(tf.random_normal([480])),
'out': tf.Variable(tf.random_normal([10]))
}
# Construct model
pred = dnn(x, weights, biases, keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
#
tf.summary.scalar("loss", cost)
tf.summary.scalar("accuracy", accuracy)
# Merge all summaries to a single operator
merged_summary_op = tf.summary.merge_all()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
summary_writer = tf.summary.FileWriter('/tmp/logs/ex12_dnn', graph=sess.graph)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
print("Iter " + str(step * batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
summary_writer.add_summary(summary_str, step)
step += 1
print("Optimization Finished!")
# Calculate accuracy for 256 mnist test images
print("Testing Accuracy:",
sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.}))
# 98%
I don’t know how to use it, but I got an error after changing it several times.
Error is similar
ValueError: Only call `softmax_cross_entropy_with_logits` with named arguments (labels=..., logits=..., ...)
黄舟2017-05-18 10:49:09
I don’t know if I understand what you mean. What this code mnist = input_data.read_data_sets("/tmp/tensorflow/mnist/input_data", one_hot=True)
reads is mnist data. You replace it, then use the TFRecord reading code to read the TFRecord data, and replace mnist in the code for training the network below. out, and make sure that the convolution operation parameters you use correspond to the TFRecord data.