Rumah > Soal Jawab > teks badan
Saya cuba menggunakan skrip JS ini dalam jadual data DT (dari tapak web ini: https://datatables.net/blog/2021-09-17):
var fsrco = $('#fuzzy-ranking').DataTable({ fuzzySearch: { rankColumn: 3 }, sort: [[3, 'desc']] }); fsrco.on('draw', function(){ fsrco.order([3, 'desc']); });
Gunakan tag skrip ini:
"//cdn.datatables.net/plug-ins/1.11.3/features/fuzzySearch/dataTables.fuzzySearch.js"
Saya ingin memasukkan ini ke dalam fungsi jadual data DT dalam apl Shiny yang mana carian kabur digunakan menggunakan susunan kedudukan (atas mempunyai persamaan yang lebih tinggi), namun, saya tidak mahu lajur kedudukan dipaparkan. p>
Serupa dengan ini, tetapi tanpa lajur ranking.
Beberapa contoh umum asas:
library(shiny) library(DT) js <- c( " var fsrco = $('#fuzzy-ranking').DataTable({", " fuzzySearch: {", " rankColumn: 3", " },", " sort: [[3, 'desc']]", "});", "fsrco.on('draw', function(){", " fsrco.order([3, 'desc']);", "});" ) ui <- fluidPage( DTOutput("table") ) server <- function(input, output, session){ output[["table"]] <- renderDT({ datatable( iris, selection = "none", editable = TRUE, callback = JS(js), extensions = "KeyTable", options = list( keys = TRUE, url = "//cdn.datatables.net/plug-ins/1.11.3/features/fuzzySearch/dataTables.fuzzySearch.js" ) ) }) } shinyApp(ui, server)
P粉3109311982024-04-02 12:56:23
Pemalam ini ialah pemalam lama dan ia tidak berfungsi dengan versi terkini DataTable.
Tetapi kita boleh mengambil fungsi JavaScript yang mengira persamaan dan menggunakannya dalam carian tersuai melalui sambungan SearchBuilder.
Mula-mula, salin kod JavaScript ini dan simpan di bawah nama levenshtein.js:
/* BSD 2-Clause License Copyright (c) 2018, Tadeusz Łazurski All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ function levenshtein(__this, that, limit) { var thisLength = __this.length, thatLength = that.length, matrix = []; // If the limit is not defined it will be calculate from this and that args. limit = (limit || (thatLength > thisLength ? thatLength : thisLength)) + 1; for (var i = 0; i < limit; i++) { matrix[i] = [i]; matrix[i].length = limit; } for (i = 0; i < limit; i++) { matrix[0][i] = i; } if (Math.abs(thisLength - thatLength) > (limit || 100)) { return prepare(limit || 100); } if (thisLength === 0) { return prepare(thatLength); } if (thatLength === 0) { return prepare(thisLength); } // Calculate matrix. var j, this_i, that_j, cost, min, t; for (i = 1; i <= thisLength; ++i) { this_i = __this[i - 1]; // Step 4 for (j = 1; j <= thatLength; ++j) { // Check the jagged ld total so far if (i === j && matrix[i][j] > 4) return prepare(thisLength); that_j = that[j - 1]; cost = this_i === that_j ? 0 : 1; // Step 5 // Calculate the minimum (much faster than Math.min(...)). min = matrix[i - 1][j] + 1; // Devarion. if ((t = matrix[i][j - 1] + 1) < min) min = t; // Insertion. if ((t = matrix[i - 1][j - 1] + cost) < min) min = t; // Substitution. // Update matrix. matrix[i][j] = i > 1 && j > 1 && this_i === that[j - 2] && __this[i - 2] === that_j && (t = matrix[i - 2][j - 2] + cost) < min ? t : min; // Transposition. } } return prepare(matrix[thisLength][thatLength]); function prepare(steps) { var length = Math.max(thisLength, thatLength); var relative = length === 0 ? 0 : steps / length; var similarity = 1 - relative; return { steps: steps, relative: relative, similarity: similarity }; } }
Sekarang, inilah kod R:
library(DT) dtable <- datatable( iris, extensions = "SearchBuilder", options = list( dom = "Qlfrtip", searchBuilder = list( conditions = list( string = list( fuzzy = list( conditionName = "Fuzzy search", init = JS( "function (that, fn, preDefined = null) {", " var el = $('').on('input', function() { fn(that, this) });", " if (preDefined !== null) {", " $(el).val(preDefined[0]);", " }", " return el;", "}" ), inputValue = JS( "function (el) {", " return [$(el[0]).val()];", "}" ), isInputValid = JS( "function (el, that) {", " return $(el[0]).val().length !== 0;", "}" ), search = JS( "function (value, pattern) {", " var fuzzy = levenshtein(value, pattern[0]);", " return fuzzy.similarity > 0.25;", "}" ) ) ) ) ) ) ) path <- normalizePath("path/to") # the folder containing levenshtein.js dep <- htmltools::htmlDependency( "Levenshtein", "1.0.0", path, script = "levenshtein.js") dtable$dependencies <- c(dtable$dependencies, list(dep)) dtable
Ambang persamaan mesti dipilih. Apa yang saya ambil di sini ialah 0.25
:
return fuzzy.similarity > 0.25;
Untuk digunakan dalam Shiny, gunakan server=FALSE
:
renderDT({ dtable }, server = FALSE)