Rumah > Soal Jawab > teks badan
Ini adalah contoh topeng COCO RLE - https://pastebin.com/ZhE2en4C
Ini ialah output larian pengesahan YOLOv8, diambil daripada fail Predictions.json yang dijana.
Saya cuba menyahkod rentetan ini dalam JavaScript dan memaparkannya pada kanvas. Rentetan yang dikodkan adalah sah kerana dalam python saya boleh melakukan ini:
from pycocotools import mask as coco_mask from PIL import Image example_prediction = { "image_id": "102_jpg", "category_id": 0, "bbox": [153.106, 281.433, 302.518, 130.737], "score": 0.8483, "segmentation": { "size": [640, 640], "counts": "<RLE string here>" } } def rle_to_bitmap(rle): bitmap = coco_mask.decode(rle) return bitmap def show_bitmap(bitmap): img = Image.fromarray(bitmap.astype(np.uint8) * 255, mode='L') img.show() input("Press Enter to continue...") img.close() mask_bitmap = rle_to_bitmap(example_prediction["segmentation"]) show_bitmap(mask_bitmap)
Saya dapat melihat topeng yang didekod.
Adakah terdapat perpustakaan yang boleh digunakan untuk menyahkod rentetan yang sama dalam JavaScript dan menukarnya kepada Image
? Saya cuba menggali kod sumber pycocotools tetapi saya tidak dapat.
P粉0249861502023-12-08 09:11:58
Anda boleh melukis topeng pada kanvas dan kemudian mengeksport imej jika perlu.
Untuk lukisan sebenar, anda boleh menggunakan dua kaedah:
Berikut adalah contoh kedua-duanya:
// Styling and scaling just for demo let wrapper = document.createElement("div") wrapper.style.cssText = ` transform-origin: left top; transform: scale(8); ` document.body.style.cssText = ` background-color: #121212; margin: 0; overflow: hidden; ` document.body.appendChild(wrapper) // Helpers function createCanvas(width, height) { let canvas = document.createElement("canvas") canvas.style.cssText = ` border: 1px solid white; display: block; float: left; image-rendering: pixelated; ` canvas.height = height canvas.width = width // Comment this line if you need only image sources wrapper.appendChild(canvas) return canvas } function randomColorRGBA() { return [ Math.round(Math.random() * 255), Math.round(Math.random() * 255), Math.round(Math.random() * 255), 255 ] } // Fast array flattening (faster than Array.proto.flat()) function flatten(arr) { const flattened = [] !(function flat(arr) { arr.forEach((el) => { if (Array.isArray(el)) flat(el) else flattened.push(el) }) })(arr) return flattened } // Decode from RLE to Binary Mask // (pass false to flat argument if you need 2d matrix output) function decodeCocoRLE([rows, cols], counts, flat = true) { let pixelPosition = 0, binaryMask if (flat) { binaryMask = Array(rows * cols).fill(0) } else { binaryMask = Array.from({length: rows}, (_) => Array(cols).fill(0)) } for (let i = 0, rleLength = counts.length; i < rleLength; i += 2) { let zeros = counts[i], ones = counts[i + 1] ?? 0 pixelPosition += zeros while (ones > 0) { const rowIndex = pixelPosition % rows, colIndex = (pixelPosition - rowIndex) / rows if (flat) { const arrayIndex = rowIndex * cols + colIndex binaryMask[arrayIndex] = 1 } else { binaryMask[rowIndex][colIndex] = 1 } pixelPosition++ ones-- } } if (!flat) { console.log("Result matrix:") binaryMask.forEach((row, i) => console.log(row.join(" "), `- row ${i}`)) } return binaryMask } // 1. Draw from binary mask function drawFromBinaryMask({size, counts}) { let fillColor = randomColorRGBA(), height = size[0], width = size[1] let canvas = createCanvas(width, height), canvasCtx = canvas.getContext("2d"), imgData = canvasCtx.getImageData(0, 0, width, height), pixelData = imgData.data // If you need matrix output (flat = false) // let maskFlattened = flatten(decodeCocoRLE(size, counts, false)), // maskLength = maskFlattened.length; // If not - it's better to use faster approach let maskFlattened = decodeCocoRLE(size, counts), maskLength = maskFlattened.length; for(let i = 0; i < maskLength; i++) { if (maskFlattened[i] === 1) { let pixelPosition = i * 4 pixelData[pixelPosition] = fillColor[0] pixelData[pixelPosition + 1] = fillColor[1] pixelData[pixelPosition + 2] = fillColor[2] pixelData[pixelPosition + 3] = fillColor[3] } } canvasCtx.putImageData(imgData, 0, 0) // If needed you can return data:image/png // to use it as an image.src return canvas.toDataURL() } // 2. Draw using virtual canvas function drawDirectlyFromRle({size: [rows, cols], counts}) { let fillColor = randomColorRGBA(), isOnesInterval = false, start = 0, end = 0 let realCanvas = createCanvas(cols, rows), realCtx = realCanvas.getContext("2d") let virtualCanvas = new OffscreenCanvas(rows, cols), virtualCtx = virtualCanvas.getContext("2d"), imgData = virtualCtx.getImageData(0, 0, rows, cols), pixelData = imgData.data counts.forEach((interval) => { end = start + interval * 4 if (isOnesInterval) { for (let i = start; i < end; i += 4) { pixelData[i] = fillColor[0] pixelData[i + 1] = fillColor[1] pixelData[i + 2] = fillColor[2] pixelData[i + 3] = fillColor[3] } } start = end isOnesInterval = !isOnesInterval }) virtualCtx.putImageData(imgData, 0, 0) realCtx.save() realCtx.scale(-1, 1) realCtx.rotate(90*Math.PI/180) realCtx.drawImage(virtualCanvas, 0, 0) realCtx.restore() // If needed you can return data:image/png // to use it as an image.src return realCanvas.toDataURL() } // Test RLE const exampleCocoRLE = { counts: [15, 1, 9, 1, 3, 3, 2, 1, 8, 1, 8, 1, 3, 3, 2, 1, 8, 1, 7, 1, 11], size: [9, 10] } // Draw on canvas let imageSrc1 = drawFromBinaryMask(exampleCocoRLE), imageSrc2 = drawDirectlyFromRle(exampleCocoRLE) console.log("Canvas 1 image (from binary):\n", imageSrc1) console.log("Canvas 2 image (from virtual):\n", imageSrc2) // Example of src usage let image1 = document.createElement("img"), image2 = document.createElement("img"), imageStyle = ` display: block; float: left; border: 1px solid lime; image-rendering: pixelated; ` // demo styling image1.style.cssText = imageStyle image2.style.cssText = imageStyle image1.onload = () => { wrapper.appendChild(image1) } image2.onload = () => { wrapper.appendChild(image2) } image1.src = imageSrc1 image2.src = imageSrc2