在循环对象和函数对象中,我们了解了循环器(iterator)的功能。循环器是对象的容器,包含有多个对象。通过调用循环器的next()方法 (__next__()方法,在Python 3.x中),循环器将依次返回一个对象。直到所有的对象遍历穷尽,循环器将举出StopIteration错误。
在for i in iterator结构中,循环器每次返回的对象将赋予给i,直到循环结束。使用iter()内置函数,我们可以将诸如表、字典等容器变为循环器。比如:
代码如下:
for i in iter([2, 4, 5, 6]):
print(i)
标准库中的itertools包提供了更加灵活的生成循环器的工具。这些工具的输入大都是已有的循环器。另一方面,这些工具完全可以自行使用Python实现,该包只是提供了一种比较标准、高效的实现方式。这也符合Python“只有且最好只有解决方案”的理念。
代码如下:
# import the tools
from itertools import *
无穷循环器
count(5, 2) #从5开始的整数循环器,每次增加2,即5, 7, 9, 11, 13, 15 ...
cycle('abc') #重复序列的元素,既a, b, c, a, b, c ...
repeat(1.2) #重复1.2,构成无穷循环器,即1.2, 1.2, 1.2, ...
repeat也可以有一个次数限制:
repeat(10, 5) #重复10,共重复5次
函数式工具
函数式编程是将函数本身作为处理对象的编程范式。在Python中,函数也是对象,因此可以轻松的进行一些函数式的处理,比如map(), filter(), reduce()函数。
itertools包含类似的工具。这些函数接收函数作为参数,并将结果返回为一个循环器。
比如:
代码如下:
from itertools import *
rlt = imap(pow, [1, 2, 3], [1, 2, 3])
for num in rlt:
print(num)
上面显示了imap函数。该函数与map()函数功能相似,只不过返回的不是序列,而是一个循环器。包含元素1, 4, 27,即1**1, 2**2, 3**3的结果。函数pow(内置的乘方函数)作为第一个参数。pow()依次作用于后面两个列表的每个元素,并收集函数结果,组成返回的循环器。
此外,还可以用下面的函数:
代码如下:
starmap(pow, [(1, 1), (2, 2), (3, 3)])
pow将依次作用于表的每个tuple。
ifilter函数与filter()函数类似,只是返回的是一个循环器。
代码如下:
ifilter(lambda x: x > 5, [2, 3, 5, 6, 7]
将lambda函数依次作用于每个元素,如果函数返回True,则收集原来的元素。6, 7
此外,
代码如下:
ifilterfalse(lambda x: x > 5, [2, 3, 5, 6, 7])
与上面类似,但收集返回False的元素。2, 3, 5
代码如下:
takewhile(lambda x: x
当函数返回True时,收集元素到循环器。一旦函数返回False,则停止。1, 3
代码如下:
dropwhile(lambda x: x
当函数返回False时,跳过元素。一旦函数返回True,则开始收集剩下的所有元素到循环器。6, 7, 1。
组合工具
我们可以通过组合原有循环器,来获得新的循环器。
代码如下:
chain([1, 2, 3], [4, 5, 7]) # 连接两个循环器成为一个。1, 2, 3, 4, 5, 7
product('abc', [1, 2]) # 多个循环器集合的笛卡尔积。相当于嵌套循环
for m, n in product('abc', [1, 2]):
print m, n
permutations('abc', 2) # 从'abcd'中挑选两个元素,比如ab, bc, ... 将所有结果排序,返回为新的循环器。
注意,上面的组合分顺序,即ab, ba都返回。
combinations('abc', 2) # 从'abcd'中挑选两个元素,比如ab, bc, ... 将所有结果排序,返回为新的循环器。
注意,上面的组合不分顺序,即ab, ba的话,只返回一个ab。
combinations_with_replacement('abc', 2) # 与上面类似,但允许两次选出的元素重复。即多了aa, bb, cc。
groupby()
将key函数作用于原循环器的各个元素。根据key函数结果,将拥有相同函数结果的元素分到一个新的循环器。每个新的循环器以函数返回结果为标签。
这就好像一群人的身高作为循环器。我们可以使用这样一个key函数: 如果身高大于180,返回"tall";如果身高底于160,返回"short";中间的返回"middle"。最终,所有身高将分为三个循环器,即"tall", "short", "middle"。
代码如下:
def height_class(h):
if h > 180:
return "tall"
elif h
return "short"
else:
return "middle"friends = [191, 158, 159, 165, 170, 177, 181, 182, 190] friends = sorted(friends, key = height_class)
for m, n in groupby(friends, key = height_class):
print(m)
print(list(n))
注意,groupby的功能类似于UNIX中的uniq命令。分组之前需要使用sorted()对原循环器的元素,根据key函数进行排序,让同组元素先在位置上靠拢。
其它工具
compress('ABCD', [1, 1, 1, 0]) # 根据[1, 1, 1, 0]的真假值情况,选择第一个参数'ABCD'中的元素。A, B, C
islice() # 类似于slice()函数,只是返回的是一个循环器
izip() # 类似于zip()函数,只是返回的是一个循环器。
总结
itertools的工具都可以自行实现。itertools只是提供了更加成形的解决方案。

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Aplikasi dunia sebenar Python termasuk analisis data, pembangunan web, kecerdasan buatan dan automasi. 1) Dalam analisis data, Python menggunakan panda dan matplotlib untuk memproses dan memvisualisasikan data. 2) Dalam pembangunan web, kerangka Django dan Flask memudahkan penciptaan aplikasi web. 3) Dalam bidang kecerdasan buatan, tensorflow dan pytorch digunakan untuk membina dan melatih model. 4) Dari segi automasi, skrip python boleh digunakan untuk tugas -tugas seperti menyalin fail.

Python digunakan secara meluas dalam bidang sains data, pembangunan web dan bidang skrip automasi. 1) Dalam sains data, Python memudahkan pemprosesan dan analisis data melalui perpustakaan seperti numpy dan panda. 2) Dalam pembangunan web, rangka kerja Django dan Flask membolehkan pemaju dengan cepat membina aplikasi. 3) Dalam skrip automatik, kesederhanaan Python dan perpustakaan standard menjadikannya ideal.

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.