cari
Rumahpangkalan datatutorial mysqlMySQL不同存储引擎和不同分区字段对于查询的影响_MySQL

bitsCN.com

MySQL不同存储引擎和不同分区字段对于查询的影响

 

前提:每种表类型准备了200万条相同的数据。

表一 InnoDB & PARTITION BY RANGE (id) 

Sql代码      

CREATE TABLE `customer_innodb_id` (  

  `id` int(11) NOT NULL,  

  `email` varchar(64) NOT NULL,  

  `name` varchar(32) NOT NULL,  

  `password` varchar(32) NOT NULL,  

  `phone` varchar(13) DEFAULT NULL,  

  `birth` date DEFAULT NULL,  

  `sex` int(1) DEFAULT NULL,  

  `avatar` blob,  

  `address` varchar(64) DEFAULT NULL,  

  `regtime` datetime DEFAULT NULL,  

  `lastip` varchar(15) DEFAULT NULL,  

  `modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,  

  PRIMARY KEY (`id`)  

) ENGINE=InnoDB DEFAULT CHARSET=utf8  

/*!50100 PARTITION BY RANGE (id)  

(PARTITION p0 VALUES LESS THAN (100000) ENGINE = InnoDB,  

 PARTITION p1 VALUES LESS THAN (500000) ENGINE = InnoDB,  

 PARTITION p2 VALUES LESS THAN (1000000) ENGINE = InnoDB,  

 PARTITION p3 VALUES LESS THAN (1500000) ENGINE = InnoDB,  

 PARTITION p4 VALUES LESS THAN (2000000) ENGINE = InnoDB,  

 PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;  

 

查询结果:    

Sql代码  

mysql> select count(*) from customer_innodb_id where id > 50000 and id

  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (1.19 sec)  

  

mysql> select count(*) from customer_innodb_id where id > 50000 and id

  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.28 sec)  

  

mysql> select count(*) from customer_innodb_id where regtime > '1995-01-01 00:00  

:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (4.74 sec)  

  

mysql> select count(*) from customer_innodb_id where regtime > '1995-01-01 00:00  

:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (5.28 sec)  

 

表二 InnoDB & PARTITION BY RANGE (year) 

Sql代码  

CREATE TABLE `customer_innodb_year` (  

  `id` int(11) NOT NULL,  

  `email` varchar(64) NOT NULL,  

  `name` varchar(32) NOT NULL,  

  `password` varchar(32) NOT NULL,  

  `phone` varchar(13) DEFAULT NULL,  

  `birth` date DEFAULT NULL,  

  `sex` int(1) DEFAULT NULL,  

  `avatar` blob,  

  `address` varchar(64) DEFAULT NULL,  

  `regtime` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',  

  `lastip` varchar(15) DEFAULT NULL,  

  `modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,  

  PRIMARY KEY (`id`,`regtime`)  

) ENGINE=InnoDB DEFAULT CHARSET=utf8  

/*!50100 PARTITION BY RANGE (YEAR(regtime ))  

(PARTITION p0 VALUES LESS THAN (1996) ENGINE = InnoDB,  

 PARTITION p1 VALUES LESS THAN (1997) ENGINE = InnoDB,  

 PARTITION p2 VALUES LESS THAN (1998) ENGINE = InnoDB,  

 PARTITION p3 VALUES LESS THAN (1999) ENGINE = InnoDB,  

 PARTITION p4 VALUES LESS THAN (2000) ENGINE = InnoDB,  

 PARTITION p5 VALUES LESS THAN (2001) ENGINE = InnoDB,  

 PARTITION p6 VALUES LESS THAN (2002) ENGINE = InnoDB,  

 PARTITION p7 VALUES LESS THAN (2003) ENGINE = InnoDB,  

 PARTITION p8 VALUES LESS THAN (2004) ENGINE = InnoDB,  

 PARTITION p9 VALUES LESS THAN (2005) ENGINE = InnoDB,  

 PARTITION p10 VALUES LESS THAN (2006) ENGINE = InnoDB,  

 PARTITION p11 VALUES LESS THAN (2007) ENGINE = InnoDB,  

 PARTITION p12 VALUES LESS THAN (2008) ENGINE = InnoDB,  

 PARTITION p13 VALUES LESS THAN (2009) ENGINE = InnoDB,  

 PARTITION p14 VALUES LESS THAN (2010) ENGINE = InnoDB,  

 PARTITION p15 VALUES LESS THAN (2011) ENGINE = InnoDB,  

 PARTITION p16 VALUES LESS THAN (2012) ENGINE = InnoDB,  

 PARTITION p17 VALUES LESS THAN (2013) ENGINE = InnoDB,  

 PARTITION p18 VALUES LESS THAN (2014) ENGINE = InnoDB,  

 PARTITION p19 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;  

 

查询结果:

Sql代码  

mysql> select count(*) from customer_innodb_year where id > 50000 and id

0;  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (5.31 sec)  

  

mysql> select count(*) from customer_innodb_year where id > 50000 and id

0;  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.31 sec)  

  

mysql> select count(*) from customer_innodb_year where regtime > '1995-01-01 00:  

00:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (0.47 sec)  

  

mysql> select count(*) from customer_innodb_year where regtime > '1995-01-01 00:  

00:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (0.19 sec)  

 

表三 MyISAM & PARTITION BY RANGE (id) 

Sql代码  

CREATE TABLE `customer_myisam_id` (  

  `id` int(11) NOT NULL,  

  `email` varchar(64) NOT NULL,  

  `name` varchar(32) NOT NULL,  

  `password` varchar(32) NOT NULL,  

  `phone` varchar(13) DEFAULT NULL,  

  `birth` date DEFAULT NULL,  

  `sex` int(1) DEFAULT NULL,  

  `avatar` blob,  

  `address` varchar(64) DEFAULT NULL,  

  `regtime` datetime DEFAULT NULL,  

  `lastip` varchar(15) DEFAULT NULL,  

  `modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,  

  PRIMARY KEY (`id`)  

) ENGINE=MyISAM DEFAULT CHARSET=utf8  

/*!50100 PARTITION BY RANGE (id)  

(PARTITION p0 VALUES LESS THAN (100000) ENGINE = MyISAM,  

 PARTITION p1 VALUES LESS THAN (500000) ENGINE = MyISAM,  

 PARTITION p2 VALUES LESS THAN (1000000) ENGINE = MyISAM,  

 PARTITION p3 VALUES LESS THAN (1500000) ENGINE = MyISAM,  

 PARTITION p4 VALUES LESS THAN (2000000) ENGINE = MyISAM,  

 PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = MyISAM) */;  

 

查询结果:

Sql代码  

mysql> select count(*) from customer_myisam_id where id > 50000 and id

  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.59 sec)  

  

mysql> select count(*) from customer_myisam_id where id > 50000 and id

  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.16 sec)  

  

mysql> select count(*) from customer_myisam_id where regtime > '1995-01-01 00:00  

:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (34.17 sec)  

  

mysql> select count(*) from customer_myisam_id where regtime > '1995-01-01 00:00  

:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (34.06 sec)  

 

表四 MyISAM & PARTITION BY RANGE (year) 

Sql代码  

CREATE TABLE `customer_myisam_year` (  

  `id` int(11) NOT NULL,  

  `email` varchar(64) NOT NULL,  

  `name` varchar(32) NOT NULL,  

  `password` varchar(32) NOT NULL,  

  `phone` varchar(13) DEFAULT NULL,  

  `birth` date DEFAULT NULL,  

  `sex` int(1) DEFAULT NULL,  

  `avatar` blob,  

  `address` varchar(64) DEFAULT NULL,  

  `regtime` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',  

  `lastip` varchar(15) DEFAULT NULL,  

  `modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,  

  PRIMARY KEY (`id`,`regtime`)  

) ENGINE=MyISAM DEFAULT CHARSET=utf8  

/*!50100 PARTITION BY RANGE (YEAR(regtime ))  

(PARTITION p0 VALUES LESS THAN (1996) ENGINE = MyISAM,  

 PARTITION p1 VALUES LESS THAN (1997) ENGINE = MyISAM,  

 PARTITION p2 VALUES LESS THAN (1998) ENGINE = MyISAM,  

 PARTITION p3 VALUES LESS THAN (1999) ENGINE = MyISAM,  

 PARTITION p4 VALUES LESS THAN (2000) ENGINE = MyISAM,  

 PARTITION p5 VALUES LESS THAN (2001) ENGINE = MyISAM,  

 PARTITION p6 VALUES LESS THAN (2002) ENGINE = MyISAM,  

 PARTITION p7 VALUES LESS THAN (2003) ENGINE = MyISAM,  

 PARTITION p8 VALUES LESS THAN (2004) ENGINE = MyISAM,  

 PARTITION p9 VALUES LESS THAN (2005) ENGINE = MyISAM,  

 PARTITION p10 VALUES LESS THAN (2006) ENGINE = MyISAM,  

 PARTITION p11 VALUES LESS THAN (2007) ENGINE = MyISAM,  

 PARTITION p12 VALUES LESS THAN (2008) ENGINE = MyISAM,  

 PARTITION p13 VALUES LESS THAN (2009) ENGINE = MyISAM,  

 PARTITION p14 VALUES LESS THAN (2010) ENGINE = MyISAM,  

 PARTITION p15 VALUES LESS THAN (2011) ENGINE = MyISAM,  

 PARTITION p16 VALUES LESS THAN (2012) ENGINE = MyISAM,  

 PARTITION p17 VALUES LESS THAN (2013) ENGINE = MyISAM,  

 PARTITION p18 VALUES LESS THAN (2014) ENGINE = MyISAM,  

 PARTITION p19 VALUES LESS THAN MAXVALUE ENGINE = MyISAM) */;  

 

查询结果:

Sql代码  

mysql> select count(*) from customer_myisam_year where id > 50000 and id

0;  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (2.08 sec)  

  

mysql> select count(*) from customer_myisam_year where id > 50000 and id

0;  

+----------+  

| count(*) |  

+----------+  

|   449999 |  

+----------+  

1 row in set (0.17 sec)  

  

mysql> select count(*) from customer_myisam_year where regtime > '1995-01-01 00:  

00:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (0.56 sec)  

  

mysql> select count(*) from customer_myisam_year where regtime > '1995-01-01 00:  

00:00' and regtime

+----------+  

| count(*) |  

+----------+  

|   199349 |  

+----------+  

1 row in set (0.13 sec)  

 

 结果汇总    

序号 存储引擎 分区函数 查询条件 一次查询(sec) 二次查询(sec)

1 InnoDB id id 1.19 0.28

2 InnoDB id regtime 4.74 5.28

3 InnoDB year id 5.31 0.31

4 InnoDB year regtime 0.47 0.19

5 MyISAM id id 0.59 0.16

6 MyISAM id regtime 34.17 34.06

7 MyISAM year id 2.08 0.17

8 MyISAM year regtime 0.56 0.13

 总结

1、对于按照时间区间来查询的,建议采用按照时间来分区,减少查询范围。

2、MyISAM性能总体占优,但是不支持事务处理、外键约束等。

 

bitsCN.com
Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tempat Mysql: Pangkalan Data dan PengaturcaraanTempat Mysql: Pangkalan Data dan PengaturcaraanApr 13, 2025 am 12:18 AM

Kedudukan MySQL dalam pangkalan data dan pengaturcaraan sangat penting. Ia adalah sistem pengurusan pangkalan data sumber terbuka yang digunakan secara meluas dalam pelbagai senario aplikasi. 1) MySQL menyediakan fungsi penyimpanan data, organisasi dan pengambilan data yang cekap, sistem sokongan web, mudah alih dan perusahaan. 2) Ia menggunakan seni bina pelanggan-pelayan, menyokong pelbagai enjin penyimpanan dan pengoptimuman indeks. 3) Penggunaan asas termasuk membuat jadual dan memasukkan data, dan penggunaan lanjutan melibatkan pelbagai meja dan pertanyaan kompleks. 4) Soalan -soalan yang sering ditanya seperti kesilapan sintaks SQL dan isu -isu prestasi boleh disahpepijat melalui arahan jelas dan log pertanyaan perlahan. 5) Kaedah pengoptimuman prestasi termasuk penggunaan indeks rasional, pertanyaan yang dioptimumkan dan penggunaan cache. Amalan terbaik termasuk menggunakan urus niaga dan preparedStatemen

Mysql: Dari perniagaan kecil ke perusahaan besarMysql: Dari perniagaan kecil ke perusahaan besarApr 13, 2025 am 12:17 AM

MySQL sesuai untuk perusahaan kecil dan besar. 1) Perniagaan kecil boleh menggunakan MySQL untuk pengurusan data asas, seperti menyimpan maklumat pelanggan. 2) Perusahaan besar boleh menggunakan MySQL untuk memproses data besar dan logik perniagaan yang kompleks untuk mengoptimumkan prestasi pertanyaan dan pemprosesan transaksi.

Apa yang dibaca oleh Phantom dan bagaimana InnoDB menghalang mereka (kunci seterusnya)?Apa yang dibaca oleh Phantom dan bagaimana InnoDB menghalang mereka (kunci seterusnya)?Apr 13, 2025 am 12:16 AM

InnoDB secara berkesan menghalang pembacaan hantu melalui mekanisme utama. 1) Kekunci seterusnya menggabungkan kunci baris dan kunci jurang untuk mengunci rekod dan jurang mereka untuk mengelakkan rekod baru daripada dimasukkan. 2) Dalam aplikasi praktikal, dengan mengoptimumkan pertanyaan dan menyesuaikan tahap pengasingan, persaingan kunci dapat dikurangkan dan prestasi konkurensi dapat ditingkatkan.

MySQL: Bukan bahasa pengaturcaraan, tetapi ...MySQL: Bukan bahasa pengaturcaraan, tetapi ...Apr 13, 2025 am 12:03 AM

MySQL bukan bahasa pengaturcaraan, tetapi bahasa pertanyaannya SQL mempunyai ciri -ciri bahasa pengaturcaraan: 1. SQL menyokong penghakiman bersyarat, gelung dan operasi berubah -ubah; 2. Melalui prosedur, pencetus dan fungsi yang disimpan, pengguna boleh melakukan operasi logik yang kompleks dalam pangkalan data.

MySQL: Pengenalan kepada pangkalan data paling popular di duniaMySQL: Pengenalan kepada pangkalan data paling popular di duniaApr 12, 2025 am 12:18 AM

MySQL adalah sistem pengurusan pangkalan data relasi sumber terbuka, terutamanya digunakan untuk menyimpan dan mengambil data dengan cepat dan boleh dipercayai. Prinsip kerjanya termasuk permintaan pelanggan, resolusi pertanyaan, pelaksanaan pertanyaan dan hasil pulangan. Contoh penggunaan termasuk membuat jadual, memasukkan dan menanyakan data, dan ciri -ciri canggih seperti Operasi Join. Kesalahan umum melibatkan sintaks SQL, jenis data, dan keizinan, dan cadangan pengoptimuman termasuk penggunaan indeks, pertanyaan yang dioptimumkan, dan pembahagian jadual.

Kepentingan MySQL: Penyimpanan Data dan PengurusanKepentingan MySQL: Penyimpanan Data dan PengurusanApr 12, 2025 am 12:18 AM

MySQL adalah sistem pengurusan pangkalan data sumber terbuka yang sesuai untuk penyimpanan data, pengurusan, pertanyaan dan keselamatan. 1. Ia menyokong pelbagai sistem operasi dan digunakan secara meluas dalam aplikasi web dan bidang lain. 2. Melalui seni bina pelanggan-pelayan dan enjin penyimpanan yang berbeza, MySQL memproses data dengan cekap. 3. Penggunaan asas termasuk membuat pangkalan data dan jadual, memasukkan, menanyakan dan mengemas kini data. 4. Penggunaan lanjutan melibatkan pertanyaan kompleks dan prosedur yang disimpan. 5. Kesilapan umum boleh disahpepijat melalui pernyataan yang dijelaskan. 6. Pengoptimuman Prestasi termasuk penggunaan indeks rasional dan pernyataan pertanyaan yang dioptimumkan.

Mengapa menggunakan mysql? Faedah dan kelebihanMengapa menggunakan mysql? Faedah dan kelebihanApr 12, 2025 am 12:17 AM

MySQL dipilih untuk prestasi, kebolehpercayaan, kemudahan penggunaan, dan sokongan komuniti. 1.MYSQL Menyediakan fungsi penyimpanan dan pengambilan data yang cekap, menyokong pelbagai jenis data dan operasi pertanyaan lanjutan. 2. Mengamalkan seni bina pelanggan-pelayan dan enjin penyimpanan berganda untuk menyokong urus niaga dan pengoptimuman pertanyaan. 3. Mudah digunakan, menyokong pelbagai sistem operasi dan bahasa pengaturcaraan. 4. Mempunyai sokongan komuniti yang kuat dan menyediakan sumber dan penyelesaian yang kaya.

Huraikan mekanisme penguncian InnoDB (kunci yang dikongsi, kunci eksklusif, kunci niat, kunci rekod, kunci jurang, kunci seterusnya).Huraikan mekanisme penguncian InnoDB (kunci yang dikongsi, kunci eksklusif, kunci niat, kunci rekod, kunci jurang, kunci seterusnya).Apr 12, 2025 am 12:16 AM

Mekanisme kunci InnoDB termasuk kunci bersama, kunci eksklusif, kunci niat, kunci rekod, kunci jurang dan kunci utama seterusnya. 1. Kunci dikongsi membolehkan urus niaga membaca data tanpa menghalang urus niaga lain dari membaca. 2. Kunci eksklusif menghalang urus niaga lain daripada membaca dan mengubah suai data. 3. Niat Kunci mengoptimumkan kecekapan kunci. 4. Rekod Rekod Kunci Kunci Rekod. 5. Gap Lock Locks Index Rakaman Gap. 6. Kunci kunci seterusnya adalah gabungan kunci rekod dan kunci jurang untuk memastikan konsistensi data.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual