cari
Rumahhujung hadapan webhtml tutorialPemahaman mendalam tentang kaedah penyambungan dan penggunaan tatasusunan numpy

Pemahaman mendalam tentang kaedah penyambungan dan penggunaan tatasusunan numpy

Jan 26, 2024 am 11:03 AM
numpySenario aplikasiPenggabungan tatasusunan

Pemahaman mendalam tentang kaedah penyambungan dan penggunaan tatasusunan numpy

Fahami kaedah penyambungan tatasusunan numpy dan senario aplikasi dalam satu artikel

Ikhtisar:
Dalam pemprosesan dan analisis data, selalunya perlu untuk menyambungkan berbilang tatasusunan numpy untuk pemprosesan dan analisis selanjutnya. Pustaka numpy menyediakan pelbagai kaedah penyambungan tatasusunan Artikel ini akan memperkenalkan kaedah penyambungan tatasusunan numpy dan senario aplikasinya, dan memberikan contoh kod tertentu.

1. Kaedah penyambungan tatasusunan Numpy:

  1. fungsinp.concatenate
    np.concatenate boleh menyambung dua atau lebih tatasusunan bersama-sama di sepanjang paksi yang ditentukan untuk membentuk tatasusunan baharu. Sintaksnya adalah seperti berikut:
    np.concatenate((a1, a2, ...), axis=0, out=None)

Antaranya, a1, a2, ...: tatasusunan yang perlu disambung ;
paksi: tentukan Paksi penyambungan, lalainya ialah 0, yang bermaksud penyambungan sepanjang paksi pertama
keluar: output tatasusunan dengan hasil penyambungan, jika tidak disediakan, tatasusunan baharu akan dibuat dan dikembalikan.

Kod sampel adalah seperti berikut:
import numpy sebagai np

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]] )

c = np.concatenate((a, b), axis=0)
print(c)

Hasil keluaran:

[[1 2]

[3 4]

[5 6]]

  1. np .vstack dan np.row_stack
    Fungsi np.vstack menyusun dua atau lebih tatasusunan secara menegak (baris) untuk membentuk tatasusunan baharu. Sintaksnya adalah seperti berikut:
    np.vstack(tup)

di mana, tup: tuple tatasusunan yang perlu disusun. Fungsi

np.row_stack mempunyai fungsi yang sama seperti fungsi np.vstack.

Kod sampel adalah seperti berikut:
import numpy sebagai np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

c = np .vstack( (a, b))
print(c)

Hasil keluaran:

[[1 2 3]

[4 5 6]]

  1. np.hstack dan np.column_stack.hstacknp menggabungkan dua Atau berbilang tatasusunan disusun bersama secara mendatar (lajur) untuk membentuk tatasusunan baharu. Sintaksnya adalah seperti berikut:
    np.hstack(tup)
di mana, tup: tuple tatasusunan yang perlu disusun. Fungsi

np.column_stack mempunyai fungsi yang sama seperti fungsi np.hstack, tetapi boleh mengendalikan tatasusunan satu dimensi.

Kod sampel adalah seperti berikut:

import numpy sebagai np

a = np.array([1, 2, 3])

b = np.array([4, 5, 6])

c = np .hstack( (a, b))

print(c)

Hasil keluaran:

[1 2 3 4 5 6]

    np.dstack
  1. np.dstack fungsi membahagi dua atau lebih tatasusunan (dalam kedalaman sepanjang paksi Z) disusun bersama untuk membentuk tatasusunan baharu. Sintaksnya adalah seperti berikut:
    np.dstack(tup)
di mana, tup: tuple tatasusunan yang perlu disusun.

Kod sampel adalah seperti berikut:

import numpy sebagai np

a = np.array([[1, 2], [3, 4]])

b = np.array([[5, 6], [7, 8]])

c = np.dstack((a, b))

print(c)

Hasil keluaran:

[[[[1 5]

[2 6]]

[[ 3 7]

[4 8]]]

2. Senario aplikasi

    Pencantuman data
  1. Apabila berbilang tatasusunan perlu digabungkan mengikut peraturan tertentu untuk membentuk tatasusunan yang besar, anda boleh menggunakan kaedah penyambungan numpy. Sebagai contoh, dalam pembelajaran mesin, set latihan dan ujian selalunya diasingkan dan mereka perlu digabungkan menjadi satu set data.
Kod sampel adalah seperti berikut:

import numpy sebagai np

Andaikan set latihan telah dimuatkan ke dalam data train_variable, dan bentuknya ialah (m, n1)

Anggapkan set ujian telah dimuatkan ke dalam data_ujian berubah, dan bentuknya ialah (k, n1)

Gabung set latihan dan set ujian ke dalam satu set data

data = np.concatenate((train_data, test_data), axis=0)

print(data.shape )

    Pembesaran data
  1. Dalam pembelajaran mendalam, untuk penambahan Data sampel latihan ialah kaedah biasa untuk meningkatkan keupayaan generalisasi model. Berbilang sampel tambahan bagi sampel boleh digabungkan menggunakan kaedah penyambungan numpy.
Kod sampel adalah seperti berikut:

import numpy sebagai np

Andaikan bahawa sampel telah dimuatkan ke dalam sampel berubah, dan bentuknya ialah (n, m)

Lakukan pengembangan flip mendatar bagi sampel

flipped_sample = np.fliplr(sample)

Cantumkan sampel ditambah

sampel_tambah = np.hstack((sampel, flipped_sample))

print(tambah_sample.shape)

Ringkasan:

Penyusunan rencana ini memperkenalkan artikel senario aplikasi. Dengan menggunakan kaedah penyambungan numpy, kita boleh menggabungkan berbilang tatasusunan untuk pemprosesan dan analisis data. Kaedah splicing termasuk np.concatenate, np.vstack, np.row_stack, np.hstack, np.column_stack dan np.dstack Anda boleh memilih kaedah yang sesuai mengikut keperluan tertentu. Kaedah ini sangat biasa dalam senario aplikasi seperti penggabungan data dan penambahan data, dan boleh membantu kami memproses dan menganalisis data dengan lebih baik.

Atas ialah kandungan terperinci Pemahaman mendalam tentang kaedah penyambungan dan penggunaan tatasusunan numpy. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Mengapa tag HTML penting untuk pembangunan web?Mengapa tag HTML penting untuk pembangunan web?May 02, 2025 am 12:03 AM

Htmltagsareessentialforwebdevelopmentastastheystructureandhancewebpages.1) theDefinelayout, semantik, dan interactivity.

Terangkan kepentingan menggunakan gaya pengekodan yang konsisten untuk tag dan atribut HTML.Terangkan kepentingan menggunakan gaya pengekodan yang konsisten untuk tag dan atribut HTML.May 01, 2025 am 12:01 AM

Gaya pengekodan HTML yang konsisten adalah penting kerana ia meningkatkan kebolehbacaan, kemampuan dan kecekapan kod. 1) Gunakan tag dan atribut huruf kecil, 2) Pastikan lekukan yang konsisten, 3) Pilih dan tentukan sebut harga tunggal atau berganda, 4) Elakkan mencampurkan gaya yang berbeza dalam projek, 5) Gunakan alat automasi seperti Prettier atau Eslint untuk memastikan konsistensi dalam gaya.

Bagaimana untuk melaksanakan Carousel Multi-Project di Bootstrap 4?Bagaimana untuk melaksanakan Carousel Multi-Project di Bootstrap 4?Apr 30, 2025 pm 03:24 PM

Penyelesaian untuk melaksanakan Carousel Multi-Project dalam Bootstrap4 Melaksanakan Carousel Multi-Project di Bootstrap4 bukanlah tugas yang mudah. Walaupun bootstrap ...

Bagaimanakah laman web rasmi DeepSeek mencapai kesan menembusi acara tatal tetikus?Bagaimanakah laman web rasmi DeepSeek mencapai kesan menembusi acara tatal tetikus?Apr 30, 2025 pm 03:21 PM

Bagaimana untuk mencapai kesan penembusan peristiwa menatal tetikus? Apabila kami melayari web, kami sering menghadapi beberapa reka bentuk interaksi khas. Sebagai contoh, di laman web rasmi DeepSeek, � ...

Cara mengubahsuai gaya kawalan main balik video HTMLCara mengubahsuai gaya kawalan main balik video HTMLApr 30, 2025 pm 03:18 PM

Gaya kawalan main balik lalai video HTML tidak dapat diubahsuai secara langsung melalui CSS. 1. Buat kawalan tersuai menggunakan JavaScript. 2. Mencantikkan kawalan ini melalui CSS. 3. Pertimbangkan keserasian, pengalaman pengguna dan prestasi, menggunakan perpustakaan seperti video.js atau PLYR dapat memudahkan proses.

Masalah apa yang akan disebabkan oleh menggunakan Pilih asli di telefon anda?Masalah apa yang akan disebabkan oleh menggunakan Pilih asli di telefon anda?Apr 30, 2025 pm 03:15 PM

Masalah yang berpotensi dengan menggunakan pilihan asli pada telefon bimbit semasa membangunkan aplikasi mudah alih, kami sering memenuhi keperluan untuk memilih kotak. Biasanya, pemaju ...

Apakah kelemahan menggunakan pilihan asli di telefon anda?Apakah kelemahan menggunakan pilihan asli di telefon anda?Apr 30, 2025 pm 03:12 PM

Apakah kelemahan menggunakan pilihan asli di telefon anda? Apabila membangunkan aplikasi pada peranti mudah alih, sangat penting untuk memilih komponen UI yang betul. Banyak pemaju ...

Bagaimana untuk mengoptimumkan pengendalian perlanggaran perayauan orang ketiga di dalam bilik menggunakan tiga.js dan octree?Bagaimana untuk mengoptimumkan pengendalian perlanggaran perayauan orang ketiga di dalam bilik menggunakan tiga.js dan octree?Apr 30, 2025 pm 03:09 PM

Gunakan tiga.js dan octree untuk mengoptimumkan pengendalian perlanggaran perayauan orang ketiga di dalam bilik. Gunakan octree dalam tiga.js untuk melaksanakan perayauan orang ketiga di dalam bilik dan tambahkan perlanggaran ...

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual