Rumah >hujung hadapan web >html tutorial >Tutorial peringkat pakar tentang analisis mendalam penyambungan tatasusunan numpy
Tutorial peringkat induk: Analisis komprehensif kaedah penyambungan tatasusunan numpy
Pengenalan:
Dalam bidang sains data dan pembelajaran mesin, numpy ialah salah satu alatan yang paling penting. Ia ialah perpustakaan Python yang berkuasa yang menyediakan objek tatasusunan berbilang dimensi berprestasi tinggi, serta pelbagai fungsi untuk memproses tatasusunan ini. Dalam numpy, penggabungan antara tatasusunan ialah operasi asas yang membolehkan kami menggabungkan berbilang tatasusunan bersama-sama tanpa mengubah bentuk tatasusunan. Artikel ini akan memperkenalkan kaedah penyambungan tatasusunan numpy secara terperinci dan memberikan contoh kod khusus. . Apabila menggunakan kaedah ini, anda perlu menentukan paksi di mana operasi penyambungan harus dilakukan. Kaedah
np.vstack: Kaedah
np.vstack digunakan untuk menggabungkan dua atau lebih tatasusunan secara menegak (dari segi baris). Ia menyusun setiap tatasusunan secara menegak untuk menjana tatasusunan baharu. Kaedahimport numpy as np # 创建两个二维数组 a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6]]) # 使用np.concatenate方法进行拼接 c = np.concatenate((a, b), axis=0) # 沿着竖直方向拼接数组 print("np.concatenate拼接结果:") print(c) # 使用np.vstack方法进行拼接 d = np.vstack((a, b)) # 沿着竖直方向拼接数组 print(" np.vstack拼接结果:") print(d) # 使用np.hstack方法进行拼接 e = np.hstack((a, b.T)) # 沿着水平方向拼接数组 print(" np.hstack拼接结果:") print(e) # 创建两个一维数组 f = np.array([1, 2, 3]) g = np.array([4, 5, 6]) # 使用np.column_stack方法进行拼接 h = np.column_stack((f, g)) # 按列拼接一维数组 print(" np.column_stack拼接结果:") print(h) # 使用np.row_stack方法进行拼接 i = np.row_stack((f, g)) # 按行拼接一维数组 print(" np.row_stack拼接结果:") print(i)
np.concatenate拼接结果: [[1 2] [3 4] [5 6]] np.vstack拼接结果: [[1 2] [3 4] [5 6]] np.hstack拼接结果: [[1 2 5] [3 4 6]] np.column_stack拼接结果: [[1 4] [2 5] [3 6]] np.row_stack拼接结果: [[1 2 3] [4 5 6]]
Kesimpulan:
Artikel ini memperkenalkan secara terperinci kaedah penyambungan tatasusunan yang biasa digunakan dalam numpy, termasuk np.concatenate, np.vstack, np.hstack, np. column_stack dan np.row_stack . Melalui contoh kod khusus, senario penggunaan dan kesan kaedah ini ditunjukkan. Dalam aplikasi praktikal, menguasai kaedah ini boleh meningkatkan kecekapan pemprosesan dan analisis data. (Nota: Contoh kod di atas adalah berdasarkan numpy versi 1.20.3, keputusan versi lain mungkin berbeza.)Atas ialah kandungan terperinci Tutorial peringkat pakar tentang analisis mendalam penyambungan tatasusunan numpy. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!