Medan Rawak Bersyarat (CRF) ialah model grafik kebarangkalian yang digunakan untuk memodelkan taburan kebarangkalian bersama jujukan berlabel. Sebagai model diskriminasi, matlamatnya adalah untuk mempelajari taburan kebarangkalian pembolehubah keluaran Y di bawah keadaan pembolehubah input X. CRF digunakan secara meluas dalam bidang seperti pemprosesan bahasa semula jadi, penglihatan komputer dan bioinformatik. Ia mampu memodelkan data jujukan dan membuat ramalan label dengan mempertimbangkan maklumat kontekstual. Dalam pemprosesan bahasa semula jadi, CRF boleh digunakan untuk tugas seperti pengecaman entiti bernama, penandaan sebahagian daripada pertuturan dan analisis sintaksis. Dalam penglihatan komputer, CRF boleh digunakan untuk tugasan seperti pembahagian imej dan pengecaman objek. Dalam bioinformatik, CRF boleh digunakan untuk tugas seperti pengecaman gen dan ramalan struktur protein. Dengan mengambil kira ciri global dan maklumat kontekstual jujukan, CRF boleh meningkatkan prestasi dan keteguhan model Andaian asas CRF ialah, memandangkan urutan input X, pelbagai kedudukan jujukan keluaran Y adalah bebas bersyarat. Maksudnya, setiap pembolehubah keluaran Yi hanya bergantung pada pembolehubah input Xi yang sepadan dan pembolehubah output Yi-1 dan Yi+1 pada kedudukan sebelumnya dan seterusnya, dan tidak ada kena mengena dengan pembolehubah keluaran pada kedudukan lain. Andaian ini membolehkan CRF menangani masalah penandaan jujukan dengan cekap, seperti pengecaman entiti bernama, penandaan sebahagian daripada pertuturan dan analisis ketulan. Andaian kebebasan CRF membolehkan model menangkap kebergantungan tempatan dalam jujukan input, dengan itu meningkatkan ketepatan dan prestasi anotasi.
Model CRF boleh dinyatakan sebagai graf tidak berarah, di mana setiap nod mewakili pembolehubah keluaran Yi, dan tepi antara nod mewakili hubungan pergantungan antara dua pembolehubah keluaran. Khususnya, jika terdapat pergantungan antara dua pembolehubah keluaran Yi dan Yj, maka terdapat kelebihan yang menghubungkannya. Berat tepi mewakili kebarangkalian bersyarat yang sepadan, yang boleh dianggarkan dengan mempelajari data latihan.
Proses latihan CRF melibatkan memaksimumkan fungsi log-kemungkinan data latihan, termasuk hasil darab kebarangkalian bersyarat pada pembolehubah yang diperhatikan (pembolehubah input X) dan kebarangkalian bersyarat pada pembolehubah output (jujukan berlabel Y) . Dengan menggunakan algoritma pengoptimuman seperti keturunan kecerunan stokastik, fungsi ini boleh dimaksimumkan untuk mendapatkan parameter model.
Proses ramalan CRF termasuk mengira taburan kebarangkalian bersyarat bagi urutan output Y di bawah urutan input X, dan memilih urutan output dengan kebarangkalian tertinggi sebagai hasil ramalan. Untuk pengiraan yang cekap, algoritma ke hadapan-belakang boleh digunakan.
Selain CRF Rantaian Linear asas, terdapat juga model medan rawak bersyarat yang lebih kompleks, seperti CRF Rantaian Bukan Linear dan Rangkaian Neural Medan Rawak Bersyarat (CRF) -NN). Model ini boleh mengendalikan masalah pelabelan jujukan yang lebih kompleks, tetapi juga memerlukan lebih banyak sumber pengkomputeran dan lebih banyak data latihan.
CRF, sebagai algoritma pembelajaran tanpa pengawasan, telah digunakan secara meluas dalam bidang seperti pemprosesan bahasa semula jadi, penglihatan komputer dan bioinformatik. Dalam bidang pemprosesan bahasa semula jadi, CRF sering digunakan untuk tugas seperti pengecaman entiti bernama, penandaan sebahagian daripada pertuturan, analisis sintaksis dan klasifikasi teks. Dalam bidang penglihatan komputer, CRF sering digunakan untuk tugasan seperti pembahagian imej, penjejakan sasaran, dan anggaran pose. Dalam bidang bioinformatik, CRF sering digunakan untuk tugas seperti pengenalan gen dan ramalan struktur protein.
Atas ialah kandungan terperinci Model medan rawak bersyarat dalam pembelajaran mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Meneroka kerja -kerja dalam model bahasa dengan skop Gemma Memahami kerumitan model bahasa AI adalah satu cabaran penting. Pelepasan Google Gemma Skop, Toolkit Komprehensif, menawarkan penyelidik cara yang kuat untuk menyelidiki

Membuka Kejayaan Perniagaan: Panduan untuk Menjadi Penganalisis Perisikan Perniagaan Bayangkan mengubah data mentah ke dalam pandangan yang boleh dilakukan yang mendorong pertumbuhan organisasi. Ini adalah kuasa penganalisis Perniagaan Perniagaan (BI) - peranan penting dalam GU

Pernyataan Jadual Alter SQL: Menambah lajur secara dinamik ke pangkalan data anda Dalam pengurusan data, kebolehsuaian SQL adalah penting. Perlu menyesuaikan struktur pangkalan data anda dengan cepat? Pernyataan Jadual ALTER adalah penyelesaian anda. Butiran panduan ini menambah colu

Pengenalan Bayangkan pejabat yang sibuk di mana dua profesional bekerjasama dalam projek kritikal. Penganalisis perniagaan memberi tumpuan kepada objektif syarikat, mengenal pasti bidang penambahbaikan, dan memastikan penjajaran strategik dengan trend pasaran. Simu

Pengiraan dan Analisis Data Excel: Penjelasan terperinci mengenai fungsi Count dan Counta Pengiraan dan analisis data yang tepat adalah kritikal dalam Excel, terutamanya apabila bekerja dengan set data yang besar. Excel menyediakan pelbagai fungsi untuk mencapai matlamat ini, dengan fungsi Count dan CountA menjadi alat utama untuk mengira bilangan sel di bawah keadaan yang berbeza. Walaupun kedua -dua fungsi digunakan untuk mengira sel, sasaran reka bentuk mereka disasarkan pada jenis data yang berbeza. Mari menggali butiran khusus fungsi Count dan Counta, menyerlahkan ciri dan perbezaan unik mereka, dan belajar cara menerapkannya dalam analisis data. Gambaran keseluruhan perkara utama Memahami kiraan dan cou

Revolusi AI Google Chrome: Pengalaman melayari yang diperibadikan dan cekap Kecerdasan Buatan (AI) dengan cepat mengubah kehidupan seharian kita, dan Google Chrome mengetuai pertuduhan di arena pelayaran web. Artikel ini meneroka exciti

Impak Reimagining: garis bawah empat kali ganda Selama terlalu lama, perbualan telah dikuasai oleh pandangan sempit kesan AI, terutama memberi tumpuan kepada keuntungan bawah. Walau bagaimanapun, pendekatan yang lebih holistik mengiktiraf kesalinghubungan BU

Perkara bergerak terus ke arah itu. Pelaburan yang dicurahkan ke dalam penyedia perkhidmatan kuantum dan permulaan menunjukkan bahawa industri memahami kepentingannya. Dan semakin banyak kes penggunaan dunia nyata muncul untuk menunjukkan nilainya


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.