Bina model pembelajaran mendalam dengan TensorFlow dan Keras
TensorFlow dan Keras kini merupakan salah satu rangka kerja pembelajaran mendalam yang paling popular. Mereka bukan sahaja menyediakan API peringkat tinggi untuk memudahkan pembinaan dan melatih model pembelajaran mendalam, tetapi juga menyediakan pelbagai lapisan dan jenis model untuk memudahkan pembinaan pelbagai jenis model pembelajaran mendalam. Oleh itu, ia digunakan secara meluas untuk melatih model pembelajaran mendalam berskala besar.
Kami akan menggunakan TensorFlow dan Keras untuk membina model pembelajaran mendalam untuk klasifikasi imej. Dalam contoh ini, kami akan menggunakan set data CIFAR-10, yang mengandungi 10 kategori berbeza dengan 6000 imej warna 32x32 bagi setiap kategori.
Pertama, kita perlu mengimport perpustakaan dan set data yang diperlukan. Kami akan menggunakan TensorFlow versi 2.0 dan API Keras untuk membina model. Berikut ialah kod untuk mengimport pustaka dan set data: ```python import aliran tensor astf daripada import tensorflow keras daripada tensorflow.keras.datasets import mnist #Import set data (x_train, y_train), (x_test, y_test) = mnist.load_data() ``` Di atas ialah kod untuk mengimport pustaka dan set data. Kami menggunakan pustaka `tensorflow` untuk membina model dan menggunakan set data `mnist` sebagai set data contoh.
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.datasets import cifar10 # 加载CIFAR-10数据集 (x_train, y_train), (x_test, y_test) = cifar10.load_data() # 将像素值缩放到0到1之间 x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 # 将标签从整数转换为one-hot编码 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10)
Seterusnya, kami akan mentakrifkan model rangkaian neural konvolusi. Kami akan menggunakan tiga lapisan konvolusi dan tiga lapisan gabungan untuk mengekstrak ciri, dan kemudian dua lapisan bersambung sepenuhnya untuk pengelasan. Berikut ialah definisi model kami:
model = keras.Sequential( [ # 第一个卷积层 layers.Conv2D(32, (3, 3), activation="relu", input_shape=(32, 32, 3)), layers.MaxPooling2D((2, 2)), # 第二个卷积层 layers.Conv2D(64, (3, 3), activation="relu"), layers.MaxPooling2D((2, 2)), # 第三个卷积层 layers.Conv2D(128, (3, 3), activation="relu"), layers.MaxPooling2D((2, 2)), # 展平层 layers.Flatten(), # 全连接层 layers.Dense(128, activation="relu"), layers.Dense(10, activation="softmax"), ] )
Dalam model ini, kami menggunakan fungsi pengaktifan ReLU, iaitu fungsi tak linear yang biasa digunakan yang boleh membantu model mempelajari hubungan tak linear yang kompleks. Kami juga menggunakan fungsi pengaktifan softmax untuk klasifikasi berbilang kelas.
Kini kita boleh menyusun model dan memulakan latihan. Kami akan menggunakan pengoptimum Adam dan fungsi kehilangan entropi silang untuk latihan model. Inilah kodnya: model.compile(optimizer='adam', loss='categorical_crossentropy') model.fit(X_train, y_train, epochs=10, batch_size=32)
# 编译模型 model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) # 训练模型 history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))
Selepas latihan selesai, kita boleh menggunakan set ujian untuk menilai prestasi model. Berikut ialah kod kami untuk menilai model:
# 在测试集上评估模型 test_loss, test_acc = model.evaluate(x_test, y_test) print("Test loss:", test_loss) print("Test accuracy:", test_acc)
Akhir sekali, kami boleh menggunakan sejarah latihan untuk merancang kehilangan latihan dan pengesahan serta ketepatan model. Berikut ialah kod untuk melukis sejarah latihan:
import matplotlib.pyplot as plt # 绘制训练和验证损失 plt.plot(history.history["loss"], label="Training loss") plt.plot(history.history["val_loss"], label="Validation loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.legend() plt.show() # 绘制训练和验证准确率 plt.plot(history.history["accuracy"], label="Training accuracy") plt.plot(history.history["val_accuracy"], label="Validation accuracy") plt.xlabel("Epoch") plt.ylabel("Accuracy") plt.legend() plt.show()
Di atas ialah keseluruhan kod untuk contoh model pembelajaran mendalam berdasarkan TensorFlow dan Keras. Kami membina model rangkaian saraf konvolusi menggunakan set data CIFAR-10 untuk tugas pengelasan imej.
Atas ialah kandungan terperinci Bina model pembelajaran mendalam dengan TensorFlow dan Keras. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

AI Menambah Penyediaan Makanan Walaupun masih dalam penggunaan baru, sistem AI semakin digunakan dalam penyediaan makanan. Robot yang didorong oleh AI digunakan di dapur untuk mengautomasikan tugas penyediaan makanan, seperti membuang burger, membuat pizza, atau memasang SA

Pengenalan Memahami ruang nama, skop, dan tingkah laku pembolehubah dalam fungsi Python adalah penting untuk menulis dengan cekap dan mengelakkan kesilapan runtime atau pengecualian. Dalam artikel ini, kami akan menyelidiki pelbagai ASP

Pengenalan Bayangkan berjalan melalui galeri seni, dikelilingi oleh lukisan dan patung yang terang. Sekarang, bagaimana jika anda boleh bertanya setiap soalan dan mendapatkan jawapan yang bermakna? Anda mungkin bertanya, "Kisah apa yang anda ceritakan?

Meneruskan irama produk, bulan ini MediaTek telah membuat satu siri pengumuman, termasuk Kompanio Ultra dan Dimensity 9400 yang baru. Produk ini mengisi bahagian perniagaan MediaTek yang lebih tradisional, termasuk cip untuk telefon pintar

#1 Google melancarkan Agent2Agent Cerita: Ia Isnin pagi. Sebagai perekrut berkuasa AI, anda bekerja lebih pintar, tidak lebih sukar. Anda log masuk ke papan pemuka syarikat anda di telefon anda. Ia memberitahu anda tiga peranan kritikal telah diperolehi, dijadualkan, dan dijadualkan untuk

Saya akan meneka bahawa anda mesti. Kita semua seolah -olah tahu bahawa psychobabble terdiri daripada pelbagai perbualan yang menggabungkan pelbagai terminologi psikologi dan sering akhirnya menjadi tidak dapat difahami atau sepenuhnya tidak masuk akal. Semua yang anda perlu lakukan untuk memuntahkan fo

Hanya 9.5% plastik yang dihasilkan pada tahun 2022 dibuat daripada bahan kitar semula, menurut satu kajian baru yang diterbitkan minggu ini. Sementara itu, plastik terus menumpuk di tapak pelupusan sampah -dan ekosistem -sekitar dunia. Tetapi bantuan sedang dalam perjalanan. Pasukan Engin

Perbualan baru -baru ini dengan Andy Macmillan, Ketua Pegawai Eksekutif Platform Analytics Enterprise terkemuka Alteryx, menonjolkan peranan kritikal namun kurang dihargai ini dalam revolusi AI. Seperti yang dijelaskan oleh Macmillan, jurang antara data perniagaan mentah dan maklumat siap sedia


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft