


Fungsi algoritma genetik rangkaian saraf pengoptimuman nilai melampau ialah algoritma pengoptimuman yang menggunakan algoritma genetik dan rangkaian saraf secara menyeluruh. Idea terasnya ialah menggunakan model rangkaian saraf untuk menganggarkan fungsi objektif dan mencari penyelesaian optimum melalui algoritma genetik. Berbanding dengan algoritma pengoptimuman lain, algoritma genetik rangkaian saraf mempunyai keupayaan dan keteguhan carian global yang lebih kukuh, dan boleh menyelesaikan masalah nilai ekstrem fungsi tak linear yang kompleks dengan cekap. Kelebihan algoritma ini ialah ia boleh menganggarkan fungsi objektif yang kompleks melalui keupayaan pembelajaran rangkaian saraf, dan secara global mencari penyelesaian optimum melalui strategi carian algoritma genetik. Dengan menggunakan sepenuhnya kelebihan rangkaian saraf dan algoritma genetik, fungsi algoritma genetik rangkaian saraf pengoptimuman nilai melampau mempunyai potensi yang luas dalam aplikasi praktikal.
Untuk fungsi tak linear yang tidak diketahui, sukar untuk mencari nilai ekstrem fungsi dengan tepat hanya melalui data input dan output fungsi tersebut. Untuk menyelesaikan masalah seperti ini, kaedah rangkaian saraf yang digabungkan dengan algoritma genetik boleh digunakan. Rangkaian saraf mempunyai keupayaan pemasangan tak linear dan boleh muat fungsi algoritma genetik mempunyai keupayaan pengoptimuman tak linear dan boleh mencari titik ekstrem fungsi. Dengan menggabungkan kedua-dua kaedah ini, nilai ekstrem fungsi boleh didapati dengan lebih tepat.
Pengoptimuman nilai ekstrem fungsi algoritma genetik rangkaian saraf terutamanya dibahagikan kepada dua langkah: Latihan rangkaian saraf BP dan pemasangan dan pengoptimuman nilai ekstrem algoritma genetik.
Pertama, gunakan rangkaian neural BP untuk melatih dan menyesuaikan data input Melalui proses pembelajaran, rangkaian saraf boleh menghampiri fungsi objektif dan dengan itu meramalkan hasil output. Matlamat teras langkah ini adalah untuk melatih rangkaian saraf supaya ia dapat menyesuaikan data input dengan tepat dan mengubah masalah menjadi masalah mencari penyelesaian yang optimum.
Kemudian, algoritma genetik digunakan untuk melaraskan pemberat rangkaian saraf, menggunakan operasi seperti pemilihan, silang dan mutasi untuk mencari penyelesaian terbaik. Tujuan utama langkah ini adalah untuk menggunakan ciri carian global dan keteguhan algoritma genetik untuk mencari kombinasi optimum berat rangkaian saraf, supaya output ramalan rangkaian saraf mencapai tahap terbaik.
Melalui dua langkah di atas, algoritma genetik rangkaian saraf berfungsi pengoptimuman nilai melampau boleh mengubah masalah nilai ekstrem fungsi tak linear kepada masalah mencari penyelesaian optimum, dan menggunakan kelebihan rangkaian saraf dan algoritma genetik untuk mencari yang optimum penyelesaian .
Perlu diingatkan bahawa fungsi algoritma genetik rangkaian saraf pengoptimuman nilai ekstrem perlu disesuaikan dan dioptimumkan untuk masalah tertentu, termasuk pemilihan parameter seperti struktur rangkaian saraf, bilangan lapisan, bilangan nod, fungsi pengaktifan, dan algoritma genetik, dsb. Pada masa yang sama, untuk masalah yang kompleks, parameter dan struktur algoritma mungkin perlu dilaraskan untuk mendapatkan hasil pengoptimuman yang lebih baik.
Contoh Pengoptimuman Nilai Ekstrim Fungsi Algoritma Genetik Rangkaian Neural
Andaikan kita mempunyai fungsi tak linear f(x,y)=x^2+y^2, dan kami berharap dapat mencari titik nilai minimum bagi fungsi ini .
Pertama, kita boleh menggunakan rangkaian neural untuk menyesuaikan fungsi ini. Kami memilih struktur rangkaian saraf yang mudah, seperti lapisan input (2 nod, sepadan dengan x dan y), lapisan tersembunyi (5 nod), dan lapisan output (1 nod, sepadan dengan nilai output fungsi) . Kami menggunakan 4000 set data latihan dan melatih serta muat melalui rangkaian saraf BP untuk membolehkan rangkaian saraf mempelajari peraturan fungsi f(x,y).
Kemudian, kami menggunakan algoritma genetik untuk mengoptimumkan rangkaian saraf terlatih. Kami menganggap berat rangkaian saraf sebagai individu, dan setiap individu mempunyai nilai kecergasan ini ialah nilai keluaran yang diramalkan oleh rangkaian saraf. Kami terus mengoptimumkan individu melalui operasi seperti pemilihan, persilangan dan mutasi sehingga kami menemui individu yang optimum, iaitu gabungan pemberat rangkaian saraf yang optimum.
Melalui fungsi algoritma genetik rangkaian saraf pengoptimuman nilai melampau, kita boleh mencari titik nilai minimum bagi fungsi f(x,y). Nilai input yang sepadan dengan titik minimum ini ialah nilai input yang sepadan dengan gabungan optimum berat rangkaian saraf. Proses pelaksanaan yang sepadan adalah seperti berikut:
import numpy as np from sklearn.neural_network import MLPRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from scipy.optimize import minimize # 定义目标函数 def f(x): return x[0]**2 + x[1]**2 # 生成训练数据和测试数据 X = np.random.rand(4000, 2) y = f(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练神经网络 mlp = MLPRegressor(hidden_layer_sizes=(5,), activation='relu', solver='adam', max_iter=1000) mlp.fit(X_train, y_train) # 定义遗传算法优化函数 def nnga_optimize(x0): # 定义适应度函数 def fitness(x): return -f(x) # 适应度函数取负值,因为我们要找极小值点 # 定义遗传算法参数 args = (mlp.coefs_, mlp.intercepts_) options = {'maxiter': 1000} # 定义约束条件,限制搜索范围在一个小区域内 bounds = [(0, 1), (0, 1)] # 使用scipy的minimize函数进行优化 res = minimize(fitness, x0, args=args, bounds=bounds, method='SLSQP', options=options) return res.x # 进行遗传算法优化,找到最优解 x_opt = nnga_optimize([0.5, 0.5]) print('最优解:', x_opt)
Atas ialah kandungan terperinci Menggunakan algoritma genetik rangkaian saraf untuk menyelesaikan masalah nilai ekstrem fungsi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

二元神经网络(BinaryNeuralNetworks,BNN)是一种神经网络,其神经元仅具有两个状态,即0或1。相对于传统的浮点数神经网络,BNN具有许多优点。首先,BNN可以利用二进制算术和逻辑运算,加快训练和推理速度。其次,BNN减少了内存和计算资源的需求,因为二进制数相对于浮点数来说需要更少的位数来表示。此外,BNN还具有提高模型的安全性和隐私性的潜力。由于BNN的权重和激活值仅为0或1,其模型参数更难以被攻击者分析和逆向工程。因此,BNN在一些对数据隐私和模型安全性有较高要求的应用中具

在时间序列数据中,观察之间存在依赖关系,因此它们不是相互独立的。然而,传统的神经网络将每个观察看作是独立的,这限制了模型对时间序列数据的建模能力。为了解决这个问题,循环神经网络(RNN)被引入,它引入了记忆的概念,通过在网络中建立数据点之间的依赖关系来捕捉时间序列数据的动态特性。通过循环连接,RNN可以将之前的信息传递到当前观察中,从而更好地预测未来的值。这使得RNN成为处理时间序列数据任务的强大工具。但是RNN是如何实现这种记忆的呢?RNN通过神经网络中的反馈回路实现记忆,这是RNN与传统神经

模糊神经网络是一种将模糊逻辑和神经网络结合的混合模型,用于解决传统神经网络难以处理的模糊或不确定性问题。它的设计受到人类认知中模糊性和不确定性的启发,因此被广泛应用于控制系统、模式识别、数据挖掘等领域。模糊神经网络的基本架构由模糊子系统和神经子系统组成。模糊子系统利用模糊逻辑对输入数据进行处理,将其转化为模糊集合,以表达输入数据的模糊性和不确定性。神经子系统则利用神经网络对模糊集合进行处理,用于分类、回归或聚类等任务。模糊子系统和神经子系统之间的相互作用使得模糊神经网络具备更强大的处理能力,能够

FLOPS是计算机性能评估的标准之一,用来衡量每秒的浮点运算次数。在神经网络中,FLOPS常用于评估模型的计算复杂度和计算资源的利用率。它是一个重要的指标,用来衡量计算机的计算能力和效率。神经网络是一种复杂的模型,由多层神经元组成,用于进行数据分类、回归和聚类等任务。训练和推断神经网络需要进行大量的矩阵乘法、卷积等计算操作,因此计算复杂度非常高。FLOPS(FloatingPointOperationsperSecond)可以用来衡量神经网络的计算复杂度,从而评估模型的计算资源使用效率。FLOP

RMSprop是一种广泛使用的优化器,用于更新神经网络的权重。它是由GeoffreyHinton等人在2012年提出的,并且是Adam优化器的前身。RMSprop优化器的出现主要是为了解决SGD梯度下降算法中遇到的一些问题,例如梯度消失和梯度爆炸。通过使用RMSprop优化器,可以有效地调整学习速率,并且自适应地更新权重,从而提高深度学习模型的训练效果。RMSprop优化器的核心思想是对梯度进行加权平均,以使不同时间步的梯度对权重的更新产生不同的影响。具体而言,RMSprop会计算每个参数的平方

深度学习在计算机视觉领域取得了巨大成功,其中一项重要进展是使用深度卷积神经网络(CNN)进行图像分类。然而,深度CNN通常需要大量标记数据和计算资源。为了减少计算资源和标记数据的需求,研究人员开始研究如何融合浅层特征和深层特征以提高图像分类性能。这种融合方法可以利用浅层特征的高计算效率和深层特征的强表示能力。通过将两者结合,可以在保持较高分类准确性的同时降低计算成本和数据标记的要求。这种方法对于那些数据量较小或计算资源有限的应用场景尤为重要。通过深入研究浅层特征和深层特征的融合方法,我们可以进一

模型蒸馏是一种将大型复杂的神经网络模型(教师模型)的知识转移到小型简单的神经网络模型(学生模型)中的方法。通过这种方式,学生模型能够从教师模型中获得知识,并且在表现和泛化性能方面得到提升。通常情况下,大型神经网络模型(教师模型)在训练时需要消耗大量计算资源和时间。相比之下,小型神经网络模型(学生模型)具备更高的运行速度和更低的计算成本。为了提高学生模型的性能,同时保持较小的模型大小和计算成本,可以使用模型蒸馏技术将教师模型的知识转移给学生模型。这种转移过程可以通过将教师模型的输出概率分布作为学生

SqueezeNet是一种小巧而精确的算法,它在高精度和低复杂度之间达到了很好的平衡,因此非常适合资源有限的移动和嵌入式系统。2016年,DeepScale、加州大学伯克利分校和斯坦福大学的研究人员提出了一种紧凑高效的卷积神经网络(CNN)——SqueezeNet。近年来,研究人员对SqueezeNet进行了多次改进,其中包括SqueezeNetv1.1和SqueezeNetv2.0。这两个版本的改进不仅提高了准确性,还降低了计算成本。SqueezeNetv1.1在ImageNet数据集上的精度


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

Dreamweaver Mac版
Alat pembangunan web visual

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.
