Analisis Komponen Utama (PCA) ialah teknik pengurangan dimensi yang menayangkan data berdimensi tinggi kepada koordinat baharu dalam ruang berdimensi rendah dengan mengenal pasti dan mentafsir arah varians maksimum dalam data. Sebagai kaedah linear, PCA dapat mengekstrak ciri yang paling penting, dengan itu membantu kami memahami data dengan lebih baik. Dengan mengurangkan dimensi data, PCA boleh mengurangkan ruang storan dan kerumitan pengiraan sambil mengekalkan maklumat utama data. Ini menjadikan PCA alat yang berkuasa untuk memproses data berskala besar dan meneroka struktur data.
Idea asas PCA adalah untuk mencari set baru paksi ortogon, iaitu komponen utama, melalui transformasi linear, yang digunakan untuk mengekstrak maklumat terpenting dalam data. Komponen utama ini adalah gabungan linear data asal, dipilih supaya komponen utama pertama menerangkan varians terbesar dalam data, komponen utama kedua menerangkan varians kedua terbesar, dan seterusnya. Dengan cara ini, kita boleh menggunakan lebih sedikit komponen utama untuk mewakili data asal, dengan itu mengurangkan dimensi data sambil mengekalkan kebanyakan maklumat. Melalui PCA, kami boleh lebih memahami dan menerangkan struktur dan perubahan data.
Analisis Komponen Utama (PCA) ialah teknik pengurangan dimensi yang biasa digunakan yang menggunakan penguraian nilai eigen untuk mengira komponen utama. Dalam proses ini, anda perlu mengira matriks kovarians data, dan kemudian mencari vektor eigen dan nilai eigen bagi matriks ini. Vektor eigen mewakili komponen utama, dan nilai eigen mengukur kepentingan setiap komponen utama. Dengan mengunjurkan data ke dalam ruang baharu yang ditakrifkan oleh vektor ciri, pengurangan dimensi data boleh dicapai, dengan itu mengurangkan bilangan ciri dan mengekalkan kebanyakan maklumat.
Analisis Komponen Utama (PCA) biasanya ditafsirkan menggunakan penguraian eigen bagi matriks kovarians, tetapi juga boleh dilaksanakan melalui penguraian nilai tunggal (SVD) matriks data. Ringkasnya, kita boleh menggunakan SVD matriks data untuk pengurangan dimensi.
Khususnya:
SVD bermaksud Penguraian Nilai Tunggal, yang menyatakan bahawa mana-mana matriks A boleh diuraikan menjadi A=USV^T. Ini bermakna matriks U dan V ialah matriks ortogon dan vektor lajurnya dipilih daripada vektor eigen bagi matriks A dan A^T. Matriks S ialah matriks pepenjuru yang unsur pepenjurunya ialah punca kuasa dua bagi nilai eigen bagi matriks A dan A^T.
Analisis Komponen Utama (PCA) mempunyai banyak kegunaan dalam aplikasi praktikal. Sebagai contoh, dalam data imej, PCA boleh digunakan untuk mengurangkan dimensi untuk analisis dan pengelasan yang lebih mudah. Selain itu, PCA boleh digunakan untuk mengesan corak dalam data ekspresi gen dan mencari penyimpangan dalam data kewangan.
Analisis Komponen Utama (PCA) bukan sahaja boleh digunakan untuk pengurangan dimensi, tetapi juga boleh digunakan untuk menggambarkan data berdimensi tinggi dengan mengurangkannya kepada dua atau tiga dimensi, membantu meneroka dan memahami struktur data.
Atas ialah kandungan terperinci PCA: mendedahkan ciri utama data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

AI Menambah Penyediaan Makanan Walaupun masih dalam penggunaan baru, sistem AI semakin digunakan dalam penyediaan makanan. Robot yang didorong oleh AI digunakan di dapur untuk mengautomasikan tugas penyediaan makanan, seperti membuang burger, membuat pizza, atau memasang SA

Pengenalan Memahami ruang nama, skop, dan tingkah laku pembolehubah dalam fungsi Python adalah penting untuk menulis dengan cekap dan mengelakkan kesilapan runtime atau pengecualian. Dalam artikel ini, kami akan menyelidiki pelbagai ASP

Pengenalan Bayangkan berjalan melalui galeri seni, dikelilingi oleh lukisan dan patung yang terang. Sekarang, bagaimana jika anda boleh bertanya setiap soalan dan mendapatkan jawapan yang bermakna? Anda mungkin bertanya, "Kisah apa yang anda ceritakan?

Meneruskan irama produk, bulan ini MediaTek telah membuat satu siri pengumuman, termasuk Kompanio Ultra dan Dimensity 9400 yang baru. Produk ini mengisi bahagian perniagaan MediaTek yang lebih tradisional, termasuk cip untuk telefon pintar

#1 Google melancarkan Agent2Agent Cerita: Ia Isnin pagi. Sebagai perekrut berkuasa AI, anda bekerja lebih pintar, tidak lebih sukar. Anda log masuk ke papan pemuka syarikat anda di telefon anda. Ia memberitahu anda tiga peranan kritikal telah diperolehi, dijadualkan, dan dijadualkan untuk

Saya akan meneka bahawa anda mesti. Kita semua seolah -olah tahu bahawa psychobabble terdiri daripada pelbagai perbualan yang menggabungkan pelbagai terminologi psikologi dan sering akhirnya menjadi tidak dapat difahami atau sepenuhnya tidak masuk akal. Semua yang anda perlu lakukan untuk memuntahkan fo

Hanya 9.5% plastik yang dihasilkan pada tahun 2022 dibuat daripada bahan kitar semula, menurut satu kajian baru yang diterbitkan minggu ini. Sementara itu, plastik terus menumpuk di tapak pelupusan sampah -dan ekosistem -sekitar dunia. Tetapi bantuan sedang dalam perjalanan. Pasukan Engin

Perbualan baru -baru ini dengan Andy Macmillan, Ketua Pegawai Eksekutif Platform Analytics Enterprise terkemuka Alteryx, menonjolkan peranan kritikal namun kurang dihargai ini dalam revolusi AI. Seperti yang dijelaskan oleh Macmillan, jurang antara data perniagaan mentah dan maklumat siap sedia


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Dreamweaver Mac版
Alat pembangunan web visual

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.