cari
RumahPeranti teknologiAIKaedah pelaksanaan dan evolusi teknologi berkaitan klasifikasi teks sampel sifar

Kaedah pelaksanaan dan evolusi teknologi berkaitan klasifikasi teks sampel sifar

Pengkelasan dokumen tangkapan sifar merujuk kepada mengelaskan dokumen kategori tertentu tanpa melihat sampel latihan kategori tersebut. Masalah ini sangat biasa dalam aplikasi praktikal kerana banyak kali kita tidak boleh mendapatkan sampel semua kategori yang mungkin. Oleh itu, pengelasan dokumen sifar pukulan adalah masalah pengelasan teks yang sangat penting. Dalam klasifikasi dokumen sifar pukulan, kita boleh mengklasifikasikan menggunakan sampel latihan sedia ada dan maklumat semantik kategori. Pendekatan biasa ialah menggunakan vektor perkataan untuk mewakili dokumen dan kategori, dan kemudian melakukan pengelasan dengan mengira persamaan antara dokumen dan kategori. Pendekatan lain ialah menggunakan graf pengetahuan atau pangkalan pengetahuan luaran untuk memetakan dokumen dan kategori kepada entiti atau konsep dalam graf pengetahuan dan kemudian mengelaskannya melalui hubungan pada graf. Klasifikasi dokumen tangkapan sifar mempunyai aplikasi yang luas dalam banyak bidang. Dalam bidang pencarian maklumat, ia boleh membantu pengguna mencari dokumen yang berkaitan dengan cepat

Apakah klasifikasi dokumen sifar?

Dalam tugas pengelasan teks tradisional, satu set sampel latihan dengan kategori yang telah dilabelkan biasanya digunakan untuk melatih pengelas, dan kemudian pengelas digunakan untuk mengelaskan dokumen baharu. Walau bagaimanapun, dalam klasifikasi dokumen tangkapan sifar, tiada sampel latihan mana-mana kelas yang diketahui tersedia. Oleh itu, kita perlu menggunakan kaedah lain untuk mengklasifikasikan dokumen kategori yang tidak diketahui. Dalam kes ini, kaedah pembelajaran pukulan sifar boleh digunakan Contohnya, pembelajaran pukulan sifar melakukan pengelasan dengan mengaitkan sampel kategori yang diketahui dengan sampel kategori yang tidak diketahui. Pendekatan lain ialah menggunakan pembelajaran pemindahan, yang menggunakan model latihan dan pengetahuan sedia ada untuk mengklasifikasikan dokumen kategori yang tidak diketahui. Selain itu, anda juga boleh mempertimbangkan untuk menggunakan model generatif untuk menjana sampel baharu untuk pengelasan. Ringkasnya, klasifikasi dokumen tangkapan sifar ialah tugas mencabar yang memerlukan bantuan kaedah lain untuk mengendalikan situasi di mana tiada sampel latihan kategori yang diketahui.

Kaedah pengelasan dokumen tembakan sifar

1. Kaedah berasaskan vektor perkataan

Kaedah berasaskan vektor perkataan ialah kaedah pengelasan dokumen sifar tembakan yang biasa digunakan. Idea asasnya ialah untuk mempelajari ruang vektor perkataan dengan menggunakan sampel latihan kategori yang diketahui, dan kemudian menggunakan ruang ini untuk mewakili dokumen kategori yang tidak diketahui. Khususnya, untuk setiap dokumen, kita boleh mewakilinya sebagai vektor yang terdiri daripada vektor perkataan. Kami kemudiannya boleh menggunakan vektor perkataan dalam sampel latihan kategori yang diketahui untuk membandingkannya dengan vektor perkataan dalam dokumen yang akan dikelaskan untuk menentukan kategorinya. Biasanya, kita boleh menggunakan beberapa ukuran persamaan, seperti persamaan kosinus, untuk mengukur persamaan antara dokumen. Jika dokumen yang hendak dikelaskan mempunyai persamaan yang tinggi dengan sampel latihan kategori tertentu, maka kita boleh mengklasifikasikannya ke dalam kategori tersebut. Dengan cara ini, kaedah berasaskan vektor perkataan boleh mencapai klasifikasi dokumen kategori yang tidak diketahui.

Terdapat banyak variasi kaedah berasaskan vektor perkataan, yang paling biasa adalah berdasarkan vektor perkataan pra-latihan. Kaedah ini menggunakan vektor perkataan yang telah dilatih, seperti Word2Vec atau GloVe, untuk mempelajari ruang vektor perkataan. Kami kemudiannya boleh menggunakan ruang ini untuk mewakili dokumen dan melatih pengelas menggunakan sampel latihan kategori yang diketahui. Untuk dokumen kategori yang tidak diketahui, kita boleh menentukan kategorinya dengan membandingkan perwakilan vektor perkataannya dengan sampel latihan kategori yang diketahui.

2. Kaedah berasaskan graf pengetahuan

Kaedah berasaskan graf pengetahuan ialah satu lagi kaedah pengelasan dokumen sifar pukulan yang biasa digunakan. Idea asas kaedah ini adalah menggunakan maklumat semantik dalam sampel latihan kategori yang diketahui untuk membina graf pengetahuan, dan kemudian menggunakan graf pengetahuan ini untuk mewakili dokumen. Untuk dokumen kategori yang tidak diketahui, kami boleh mewakilinya sebagai nod dalam graf pengetahuan dan menggunakan nod kategori yang diketahui dalam graf untuk pengelasan.

Kaedah berdasarkan graf pengetahuan memerlukan analisis semantik dan pengekstrakan pengetahuan sampel latihan, jadi ia lebih rumit. Walau bagaimanapun, ia boleh menangkap maklumat semantik peringkat tinggi dokumen dan oleh itu mencapai hasil pengelasan yang lebih baik dalam beberapa kes.

3. Kaedah berasaskan meta-pembelajaran

Kaedah berasaskan meta-pembelajaran ialah kaedah pengelasan dokumen sifar pukulan yang dicadangkan baru-baru ini. Idea asas kaedah ini adalah menggunakan sampel latihan kategori yang diketahui untuk melatih pengelas meta yang boleh meramalkan kategori dokumen berdasarkan ciri metanya (seperti panjang dokumen, pengedaran kekerapan perkataan, dsb. .). Kemudian, untuk dokumen kategori yang tidak diketahui, kita boleh menggunakan pengelas meta untuk meramalkan kategorinya.

Kaedah berasaskan meta-pembelajaran memerlukan sejumlah besar sampel latihan dan sumber pengkomputeran, tetapi boleh mengelaskan dokumen kategori yang tidak diketahui dengan tepat.

Aplikasi klasifikasi dokumen tangkapan sifar

Pengkelasan dokumen tangkapan sifar mempunyai pelbagai aplikasi dalam bidang pemprosesan bahasa semula jadi, seperti:

1

dalam kes berbilang bahasa , kami mungkin tidak dapat mendapatkan sampel latihan untuk semua bahasa. Oleh itu, pengelasan dokumen tangkapan sifar boleh digunakan untuk mengklasifikasikan teks dalam bahasa yang tidak diketahui.

2. Klasifikasi berita

Dalam klasifikasi berita, pelbagai topik berita muncul setiap hari, dan sukar untuk mendapatkan sampel latihan untuk semua topik. Oleh itu, pengelasan dokumen tangkapan sifar boleh digunakan untuk mengklasifikasikan topik baharu.

3. Klasifikasi produk

Dalam bidang e-dagang, kita mungkin menghadapi kategori produk baharu, dan sukar untuk mendapatkan sampel latihan untuk semua kategori. Oleh itu, klasifikasi dokumen tangkapan sifar boleh digunakan untuk mengklasifikasikan kategori produk baharu.

Atas ialah kandungan terperinci Kaedah pelaksanaan dan evolusi teknologi berkaitan klasifikasi teks sampel sifar. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:网易伏羲. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
Apakah graf pemikiran dalam kejuruteraan segeraApakah graf pemikiran dalam kejuruteraan segeraApr 13, 2025 am 11:53 AM

Pengenalan Dalam kejuruteraan segera, "Grafik Pemikiran" merujuk kepada pendekatan baru yang menggunakan teori graf untuk struktur dan membimbing proses penalaran AI. Tidak seperti kaedah tradisional, yang sering melibatkan linear

Mengoptimumkan pemasaran e -mel organisasi anda dengan agen genaiMengoptimumkan pemasaran e -mel organisasi anda dengan agen genaiApr 13, 2025 am 11:44 AM

Pengenalan Tahniah! Anda menjalankan perniagaan yang berjaya. Melalui laman web anda, kempen media sosial, webinar, persidangan, sumber percuma, dan sumber lain, anda mengumpul 5000 ID e -mel setiap hari. Langkah jelas seterusnya adalah

Pemantauan Prestasi Aplikasi Masa Nyata dengan Apache PinotPemantauan Prestasi Aplikasi Masa Nyata dengan Apache PinotApr 13, 2025 am 11:40 AM

Pengenalan Dalam persekitaran pembangunan perisian pantas hari ini, memastikan prestasi aplikasi yang optimum adalah penting. Memantau metrik masa nyata seperti masa tindak balas, kadar ralat, dan penggunaan sumber dapat membantu utama

Chatgpt mencecah 1 bilion pengguna? 'Dua kali ganda dalam beberapa minggu' kata Ketua Pegawai Eksekutif OpenaiChatgpt mencecah 1 bilion pengguna? 'Dua kali ganda dalam beberapa minggu' kata Ketua Pegawai Eksekutif OpenaiApr 13, 2025 am 11:23 AM

"Berapa banyak pengguna yang anda ada?" Dia ditakdirkan. "Saya fikir kali terakhir yang kami katakan ialah 500 juta aktif mingguan, dan ia berkembang dengan pesat," jawab Altman. "Anda memberitahu saya bahawa ia seperti dua kali ganda dalam beberapa minggu sahaja," kata Anderson. "Saya mengatakan bahawa priv

Pixtral -12b: Model Multimodal Pertama Mistral Ai 'Pixtral -12b: Model Multimodal Pertama Mistral Ai 'Apr 13, 2025 am 11:20 AM

Pengenalan Mistral telah mengeluarkan model multimodal yang pertama, iaitu Pixtral-12B-2409. Model ini dibina atas parameter 12 bilion Mistral, NEMO 12B. Apa yang membezakan model ini? Ia kini boleh mengambil kedua -dua gambar dan Tex

Rangka Kerja Agentik untuk Aplikasi AI Generatif - Analytics VidhyaRangka Kerja Agentik untuk Aplikasi AI Generatif - Analytics VidhyaApr 13, 2025 am 11:13 AM

Bayangkan mempunyai pembantu berkuasa AI yang bukan sahaja memberi respons kepada pertanyaan anda tetapi juga mengumpulkan maklumat, melaksanakan tugas, dan juga mengendalikan pelbagai jenis teks, imej, dan kod. Bunyi futuristik? Dalam ini a

Aplikasi AI Generatif di Sektor KewanganAplikasi AI Generatif di Sektor KewanganApr 13, 2025 am 11:12 AM

Pengenalan Industri kewangan adalah asas kepada mana -mana pembangunan negara, kerana ia memacu pertumbuhan ekonomi dengan memudahkan urus niaga yang cekap dan ketersediaan kredit. The ease with which transactions occur and credit

Panduan untuk pembelajaran dalam talian dan algoritma pasif-agresifPanduan untuk pembelajaran dalam talian dan algoritma pasif-agresifApr 13, 2025 am 11:09 AM

Pengenalan Data dijana pada kadar yang belum pernah terjadi sebelumnya dari sumber seperti media sosial, urus niaga kewangan, dan platform e-dagang. Mengendalikan aliran maklumat yang berterusan ini adalah satu cabaran, tetapi ia menawarkan

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa