Penggunaan fungsi kehilangan biasa dalam rangkaian neural berkembar
Rangkaian saraf berkembar ialah rangkaian saraf dengan struktur dwi-cawangan, yang sering digunakan untuk pengukuran persamaan, pengelasan dan tugasan mendapatkan semula. Kedua-dua cabang rangkaian tersebut mempunyai struktur dan parameter yang sama. Selepas input melalui dua cawangan masing-masing, persamaan dikira melalui lapisan ukuran persamaan (seperti jarak Euclidean, jarak Manhattan, dll.). Semasa latihan, fungsi kehilangan kontrastif atau fungsi kehilangan tiga kali ganda biasanya digunakan.
Fungsi kehilangan kontras ialah fungsi kehilangan klasifikasi binari untuk rangkaian saraf Siam Ia bertujuan untuk memaksimumkan persamaan sampel yang serupa kepada hampir 1 dan persamaan jenis sampel yang berbeza kepada hampir 0. Ungkapan matematiknya adalah seperti berikut:
L_{con}(y,d)=ycdot d^2+(1-y)cdotmax(m-d,0)^2
Fungsi kehilangan ini digunakan untuk mengukur dua Persamaan antara sampel dioptimumkan mengikut kategori sampel. Antaranya, y mewakili sama ada sampel tergolong dalam kategori yang sama, d mewakili persamaan antara dua sampel, dan m mewakili nilai sempadan yang telah ditetapkan. Apabila y=1, matlamat fungsi kehilangan adalah untuk menjadikan d sekecil mungkin, walaupun dua sampel kategori yang sama lebih serupa. Pada masa ini, nilai fungsi kehilangan boleh dinyatakan dengan kuasa dua d, iaitu nilai fungsi kehilangan ialah d^2. Apabila y=0, matlamat fungsi kehilangan adalah untuk menjadikan d lebih besar daripada m, walaupun sampel dua kategori berbeza adalah tidak serupa yang mungkin. Pada masa ini, apabila d kurang daripada m, nilai fungsi kehilangan ialah d^2, menunjukkan persamaan antara sampel apabila d lebih besar daripada m, nilai fungsi kehilangan ialah 0, menunjukkan bahawa persamaan antara sampel telah melebihi tahap yang telah ditetapkan. Dengan mengandaikan nilai sempadan m, kerugian tidak lagi dikira
Fungsi kehilangan tiga kali ganda adalah fungsi kehilangan yang digunakan dalam rangkaian saraf berkembar Ia bertujuan untuk meminimumkan jarak antara sampel daripada jenis yang sama dan memaksimumkan jarak antara sampel yang berlainan jenis jarak antara. Ungkapan matematik bagi fungsi ini adalah seperti berikut:
L_{tri}(a,p,n)=maks(|f(a)-f(p)|^2-|f(a)-f( n )|^2+margin,0)
Antaranya, a mewakili sampel utama, p mewakili jenis sampel yang sama, n mewakili jenis sampel yang berbeza, f mewakili lapisan pengekstrakan ciri rangkaian saraf Siam , |cdot| mewakili jarak Euclidean, margin Mewakili nilai sempadan yang telah ditetapkan. Matlamat fungsi kehilangan adalah untuk menjadikan jarak antara sampel jenis yang sama sekecil mungkin, dan jarak antara sampel jenis yang berbeza seluas mungkin, dan lebih besar daripada margin. Apabila jarak antara sampel jenis yang sama adalah kurang daripada jarak sampel jenis yang berbeza tolak margin, nilai fungsi kehilangan ialah 0 apabila jarak sampel jenis yang sama lebih besar daripada jarak sampel jenis yang berbeza tolak margin, nilai fungsi kerugian ialah perbezaan antara dua jarak.
Fungsi kehilangan kontras dan fungsi kehilangan triplet kedua-duanya adalah fungsi kehilangan rangkaian saraf berkembar yang biasa digunakan. dalam ruang ciri. Dalam aplikasi praktikal, fungsi kehilangan yang sesuai boleh dipilih berdasarkan tugas dan set data tertentu, dan digabungkan dengan teknik lain (seperti peningkatan data, penyelarasan, dll.) untuk pengoptimuman model.
Atas ialah kandungan terperinci Penggunaan fungsi kehilangan biasa dalam rangkaian neural berkembar. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Istilah "tenaga kerja siap sedia" sering digunakan, tetapi apakah maksudnya dalam industri rantaian bekalan? Menurut Abe Eshkenazi, Ketua Pegawai Eksekutif Persatuan Pengurusan Rantaian Bekalan (ASCM), ia menandakan profesional yang mampu mengkritik

Revolusi AI yang terdesentralisasi secara senyap -senyap mendapat momentum. Jumaat ini di Austin, Texas, Sidang Kemuncak Endgame Bittensor menandakan momen penting, beralih ke desentralisasi AI (DEAI) dari teori kepada aplikasi praktikal. Tidak seperti iklan mewah

Perusahaan AI menghadapi cabaran integrasi data Penggunaan perusahaan AI menghadapi cabaran utama: sistem bangunan yang dapat mengekalkan ketepatan dan kepraktisan dengan terus belajar data perniagaan. Microservices NEMO menyelesaikan masalah ini dengan mewujudkan apa yang NVIDIA menggambarkan sebagai "Flywheel Data", yang membolehkan sistem AI tetap relevan melalui pendedahan berterusan kepada maklumat perusahaan dan interaksi pengguna. Toolkit yang baru dilancarkan ini mengandungi lima microservices utama: Nemo Customizer mengendalikan penalaan model bahasa yang besar dengan latihan yang lebih tinggi. NEMO Evaluator menyediakan penilaian ringkas model AI untuk tanda aras tersuai. Nemo Guardrails Melaksanakan Kawalan Keselamatan untuk mengekalkan pematuhan dan kesesuaian

AI: Masa Depan Seni dan Reka Bentuk Kecerdasan Buatan (AI) mengubah bidang seni dan reka bentuk dengan cara yang belum pernah terjadi sebelumnya, dan impaknya tidak lagi terhad kepada amatur, tetapi lebih mempengaruhi profesional. Skim karya seni dan reka bentuk yang dihasilkan oleh AI dengan cepat menggantikan imej dan pereka bahan tradisional dalam banyak aktiviti reka bentuk transaksional seperti pengiklanan, generasi imej media sosial dan reka bentuk web. Walau bagaimanapun, artis dan pereka profesional juga mendapati nilai praktikal AI. Mereka menggunakan AI sebagai alat tambahan untuk meneroka kemungkinan estetik baru, menggabungkan gaya yang berbeza, dan membuat kesan visual baru. AI membantu artis dan pereka mengautomasikan tugas berulang, mencadangkan elemen reka bentuk yang berbeza dan memberikan input kreatif. AI menyokong pemindahan gaya, iaitu menggunakan gaya gambar

Zoom, yang pada mulanya dikenali untuk platform persidangan video, memimpin revolusi tempat kerja dengan penggunaan inovatif AIS AI. Perbualan baru -baru ini dengan CTO Zoom, XD Huang, mendedahkan penglihatan yang bercita -cita tinggi syarikat itu. Menentukan Agentic AI Huang d

Adakah AI akan merevolusikan pendidikan? Soalan ini mendorong refleksi serius di kalangan pendidik dan pihak berkepentingan. Penyepaduan AI ke dalam pendidikan memberikan peluang dan cabaran. Sebagai Matthew Lynch dari Nota Edvocate Tech, Universit

Pembangunan penyelidikan dan teknologi saintifik di Amerika Syarikat mungkin menghadapi cabaran, mungkin disebabkan oleh pemotongan anggaran. Menurut Alam, bilangan saintis Amerika yang memohon pekerjaan di luar negara meningkat sebanyak 32% dari Januari hingga Mac 2025 berbanding dengan tempoh yang sama pada tahun 2024. Pungutan sebelumnya menunjukkan bahawa 75% penyelidik yang ditinjau sedang mempertimbangkan untuk mencari pekerjaan di Eropah dan Kanada. Beratus-ratus geran NIH dan NSF telah ditamatkan dalam beberapa bulan yang lalu, dengan geran baru NIH turun kira-kira $ 2.3 bilion tahun ini, setitik hampir satu pertiga. Cadangan belanjawan yang bocor menunjukkan bahawa pentadbiran Trump sedang mempertimbangkan untuk memotong belanjawan secara mendadak untuk institusi saintifik, dengan kemungkinan pengurangan sehingga 50%. Kegawatan dalam bidang penyelidikan asas juga telah menjejaskan salah satu kelebihan utama Amerika Syarikat: menarik bakat luar negara. 35

OpenAI melancarkan siri GPT-4.1 yang kuat: keluarga tiga model bahasa lanjutan yang direka untuk aplikasi dunia nyata. Lompat penting ini menawarkan masa tindak balas yang lebih cepat, pemahaman yang lebih baik, dan kos yang dikurangkan secara drastik berbanding t


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.
