cari
RumahPeranti teknologiAIKaedah menjana data, bagaimana untuk menggunakan rangkaian kepercayaan yang mendalam?

Kaedah menjana data, bagaimana untuk menggunakan rangkaian kepercayaan yang mendalam?

Jan 23, 2024 am 09:00 AM
pembelajaran yang mendalamrangkaian saraf tiruan

Kaedah menjana data, bagaimana untuk menggunakan rangkaian kepercayaan yang mendalam?

Rangkaian kepercayaan mendalam ialah rangkaian saraf dalam berdasarkan graf tidak terarah dan digunakan terutamanya dalam model generatif. Model generatif digunakan untuk menjana sampel data baharu yang serupa dengan set data latihan, jadi rangkaian kepercayaan mendalam boleh digunakan untuk penjanaan data.

Rangkaian kepercayaan mendalam terdiri daripada berbilang lapisan dan neuron. Setiap lapisan mengandungi berbilang neuron, dan setiap neuron disambungkan kepada semua neuron dalam lapisan sebelumnya. Walau bagaimanapun, tiada hubungan langsung antara neuron dalam lapisan yang berbeza. Dalam rangkaian kepercayaan yang mendalam, setiap peringkat mewakili satu set pembolehubah rawak binari. Hubungan antara tahap tidak terarah, bermakna output setiap tahap boleh mempengaruhi tahap lain, tetapi tiada maklum balas langsung.

Proses penjanaan rangkaian kepercayaan mendalam merangkumi dua peringkat: pra-latihan tanpa pengawasan dan penalaan halus diselia.

Dalam peringkat pra-latihan tanpa pengawasan, rangkaian kepercayaan mendalam membina model dengan mempelajari ciri-ciri dalam set data latihan. Dalam peringkat ini, setiap peringkat dianggap sebagai Mesin Boltzmann Terhad (RBM), model grafik tidak terarah untuk taburan kebarangkalian pembelajaran. Setiap RBM dalam rangkaian kepercayaan mendalam digunakan untuk mempelajari tahap ciri tertentu. Proses pembelajaran RBM merangkumi dua langkah: pertama, untuk setiap sampel, hitung tenaga di bawah berat semasa seterusnya, untuk setiap berat, hitung kecerunan yang sepadan, dan gunakan algoritma penurunan kecerunan untuk mengemas kini berat. Proses ini diulang beberapa kali sehingga RBM mempelajari ciri-ciri set data latihan.

Dalam peringkat penalaan halus diselia, rangkaian kepercayaan mendalam menggunakan algoritma perambatan belakang untuk memperhalusi rangkaian agar lebih sesuai dengan set data tertentu. Dalam peringkat ini, rangkaian kepercayaan mendalam dianggap sebagai perceptron berbilang lapisan (MLP), dengan setiap lapisan disambungkan ke lapisan seterusnya. Rangkaian dilatih untuk meramalkan output tertentu, seperti label klasifikasi atau nilai regresi. Melalui algoritma perambatan belakang, rangkaian mengemas kini berat dan berat sebelah berdasarkan perbezaan antara keputusan yang diramalkan dan output sebenar untuk mengurangkan ralat secara beransur-ansur. Proses ini diulang beberapa kali sehingga prestasi rangkaian mencapai tahap yang dikehendaki. Melalui penalaan halus yang diselia, rangkaian kepercayaan yang mendalam boleh menyesuaikan diri dengan tugas tertentu dengan lebih baik dan meningkatkan ketepatan ramalannya.

Sebagai contoh, katakan kita mempunyai set data yang mengandungi imej digit tulisan tangan. Kami mahu menggunakan rangkaian kepercayaan yang mendalam untuk menjana imej baharu digit tulisan tangan.

Pertama, kita perlu menukar semua imej ke dalam format binari dan memasukkannya ke dalam rangkaian kepercayaan yang mendalam.

Dalam peringkat pra-latihan tanpa pengawasan, rangkaian kepercayaan mendalam akan mempelajari ciri-ciri dalam imej ini. Dalam peringkat penalaan halus diselia, rangkaian dilatih untuk meramalkan label berangka untuk setiap imej. Setelah latihan selesai, kami boleh menggunakan rangkaian kepercayaan mendalam untuk menjana imej baharu digit tulisan tangan. Untuk menjana imej baharu, kita boleh bermula dengan hingar rawak dan kemudian menggunakan rangkaian kepercayaan mendalam untuk menjana nilai piksel binari.

Akhir sekali, kami boleh menukar nilai piksel ini kembali kepada format imej untuk menjana imej digit tulisan tangan baharu.

Ringkasnya, rangkaian kepercayaan mendalam ialah model generatif yang berkuasa yang boleh digunakan untuk menjana sampel data baharu yang serupa dengan set data latihan. Proses penjanaan rangkaian kepercayaan mendalam merangkumi dua peringkat: pra-latihan tanpa pengawasan dan penalaan halus diselia. Dengan mempelajari ciri daripada set data, rangkaian kepercayaan mendalam boleh menjana sampel data baharu, dengan itu mengembangkan set data dan meningkatkan prestasi model.

Atas ialah kandungan terperinci Kaedah menjana data, bagaimana untuk menggunakan rangkaian kepercayaan yang mendalam?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:网易伏羲. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
Bahaya Tersembunyi Penggunaan Dalaman AI: Jurang Tadbir Urus dan Risiko BencanaBahaya Tersembunyi Penggunaan Dalaman AI: Jurang Tadbir Urus dan Risiko BencanaApr 28, 2025 am 11:12 AM

Penyebaran dalaman yang tidak terkawal sistem AI yang canggih menimbulkan risiko yang signifikan, menurut laporan baru dari Apollo Research. Kekurangan pengawasan ini, lazim di kalangan firma AI utama, membolehkan hasil yang berpotensi bencana, mulai dari UNCON

Membina polygraph AIMembina polygraph AIApr 28, 2025 am 11:11 AM

Pengesan kebohongan tradisional sudah lapuk. Bergantung pada penunjuk yang disambungkan oleh gelang tangan, pengesan kebohongan yang mencetak tanda -tanda penting subjek dan tindak balas fizikal tidak tepat dalam mengenal pasti kebohongan. Inilah sebabnya mengapa keputusan pengesanan kebohongan biasanya tidak diterima pakai oleh mahkamah, walaupun ia telah membawa kepada banyak orang yang tidak bersalah yang dipenjara. Sebaliknya, kecerdasan buatan adalah enjin data yang kuat, dan prinsip kerja adalah untuk memerhatikan semua aspek. Ini bermakna saintis boleh menggunakan kecerdasan buatan kepada aplikasi yang mencari kebenaran melalui pelbagai cara. Satu pendekatan adalah untuk menganalisis tindak balas penting orang yang diinterogasi seperti pengesan dusta, tetapi dengan analisis perbandingan yang lebih terperinci dan tepat. Pendekatan lain adalah menggunakan markup linguistik untuk menganalisis apa yang orang katakan dan menggunakan logik dan penalaran. Seperti kata pepatah, satu pembohongan membiak kebohongan yang lain, dan akhirnya

Adakah AI dibersihkan untuk berlepas dalam industri aeroangkasa?Adakah AI dibersihkan untuk berlepas dalam industri aeroangkasa?Apr 28, 2025 am 11:10 AM

Industri aeroangkasa, perintis inovasi, memanfaatkan AI untuk menangani cabaran yang paling rumit. Kerumitan Peningkatan Penerbangan Moden memerlukan automasi dan keupayaan perisikan masa nyata AI untuk keselamatan yang dipertingkatkan, dikurangkan oper

Menonton Perlumbaan Robot Spring BeijingMenonton Perlumbaan Robot Spring BeijingApr 28, 2025 am 11:09 AM

Perkembangan pesat robotik telah membawa kita kajian kes yang menarik. Robot N2 dari Noetix beratnya lebih dari 40 paun dan tinggi 3 kaki dan dikatakan dapat backflip. Robot G1 Unitree berat kira -kira dua kali saiz N2 dan kira -kira 4 kaki tinggi. Terdapat juga banyak robot humanoid yang lebih kecil yang menyertai pertandingan ini, dan terdapat juga robot yang didorong ke hadapan oleh peminat. Tafsiran data Setengah maraton menarik lebih daripada 12,000 penonton, tetapi hanya 21 robot humanoid yang mengambil bahagian. Walaupun kerajaan menegaskan bahawa robot yang mengambil bahagian menjalankan "latihan intensif" sebelum pertandingan, tidak semua robot menyelesaikan keseluruhan persaingan. Champion - Tiangong Ult Dibangunkan oleh Pusat Inovasi Robot Humanoid Beijing

Perangkap Cermin: Etika AI dan keruntuhan imaginasi manusiaPerangkap Cermin: Etika AI dan keruntuhan imaginasi manusiaApr 28, 2025 am 11:08 AM

Kecerdasan buatan, dalam bentuknya sekarang, tidak benar -benar pintar; Ia mahir meniru dan menyempurnakan data sedia ada. Kami tidak mewujudkan kecerdasan buatan, tetapi sebaliknya kesimpulan buatan -merapikan yang memproses maklumat, sementara manusia su

New Google Leak mendedahkan kemas kini ciri Google Photos yang bergunaNew Google Leak mendedahkan kemas kini ciri Google Photos yang bergunaApr 28, 2025 am 11:07 AM

Laporan mendapati bahawa antara muka yang dikemas kini disembunyikan dalam kod untuk Google Photos Android versi 7.26, dan setiap kali anda melihat foto, satu baris lakaran muka yang baru dikesan dipaparkan di bahagian bawah skrin. Thumbnail wajah baru adalah tag nama yang hilang, jadi saya mengesyaki anda perlu mengkliknya secara individu untuk melihat lebih banyak maklumat mengenai setiap orang yang dikesan. Buat masa ini, ciri ini tidak memberikan maklumat selain daripada orang -orang yang ditemui oleh Google Foto dalam imej anda. Ciri ini belum tersedia, jadi kami tidak tahu bagaimana Google akan menggunakannya dengan tepat. Google boleh menggunakan gambar kecil untuk mempercepatkan mencari lebih banyak gambar orang terpilih, atau boleh digunakan untuk tujuan lain, seperti memilih individu untuk mengedit. Mari tunggu dan lihat. Buat masa ini

Panduan untuk Finetuning Pengukuhan - Analytics VidhyaPanduan untuk Finetuning Pengukuhan - Analytics VidhyaApr 28, 2025 am 09:30 AM

Penguatkuasaan penguatkuasaan telah mengguncang pembangunan AI dengan mengajar model untuk menyesuaikan berdasarkan maklum balas manusia. Ia menggabungkan asas pembelajaran yang diawasi dengan kemas kini berasaskan ganjaran untuk menjadikannya lebih selamat, lebih tepat, dan benar-benar membantu

Let's Dance: Gerakan berstruktur untuk menyempurnakan jaring saraf manusia kitaLet's Dance: Gerakan berstruktur untuk menyempurnakan jaring saraf manusia kitaApr 27, 2025 am 11:09 AM

Para saintis telah mengkaji secara meluas rangkaian saraf manusia dan mudah (seperti yang ada di C. elegans) untuk memahami fungsi mereka. Walau bagaimanapun, soalan penting timbul: Bagaimana kita menyesuaikan rangkaian saraf kita sendiri untuk berfungsi dengan berkesan bersama -sama dengan novel AI s

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.