cari
RumahPeranti teknologiAIAlgoritma EM rantai Monte Carlo Markov

Algoritma EM rantai Monte Carlo Markov

Jan 23, 2024 am 08:21 AM
pembelajaran mesinKonsep algoritma

Algoritma EM rantai Monte Carlo Markov

Algoritma Markov Chain Monte Carlo EM, dirujuk sebagai algoritma MCMC-EM, ialah algoritma statistik yang digunakan untuk anggaran parameter dalam pembelajaran tanpa pengawasan. Idea terasnya adalah untuk menggabungkan kaedah Monte Carlo rantai Markov dengan algoritma pemaksimum jangkaan untuk anggaran parameter model kebarangkalian dengan pembolehubah tersembunyi. Melalui lelaran, algoritma MCMC-EM secara beransur-ansur boleh mendekati anggaran kemungkinan maksimum parameter. Ia cekap dan fleksibel dan telah digunakan secara meluas dalam pelbagai bidang.

Idea asas algoritma MCMC-EM ialah menggunakan kaedah MCMC untuk mendapatkan sampel pembolehubah pendam, gunakan sampel ini untuk mengira nilai yang dijangkakan, dan kemudian gunakan algoritma EM untuk memaksimumkan fungsi kemungkinan log . Proses lelaran algoritma ini merangkumi dua langkah: pensampelan MCMC dan kemas kini EM. Dalam langkah persampelan MCMC, kami menggunakan kaedah MCMC untuk menganggarkan taburan posterior pembolehubah terpendam manakala dalam langkah kemas kini EM, kami menggunakan algoritma EM untuk menganggar parameter model. Dengan menukar kedua-dua langkah ini, kami boleh terus mengoptimumkan anggaran parameter model. Ringkasnya, algoritma MCMC-EM ialah algoritma lelaran yang menggabungkan MCMC dan EM untuk menganggar taburan posterior parameter model dan pembolehubah pendam.

1.Pensampelan SKMM

Dalam langkah pensampelan SKMM, anda perlu memilih keadaan awal dan menjana jujukan sampel melalui kebarangkalian peralihan rantai Markov. Rantaian Markov ialah jujukan keadaan, setiap keadaan hanya berkaitan dengan keadaan sebelumnya, jadi apabila jujukan itu berkembang, taburan kebarangkalian keadaan semasa cenderung kepada taburan yang stabil. Untuk menjadikan jujukan sampel yang dijana cenderung kepada taburan yang stabil, kebarangkalian peralihan yang sesuai perlu digunakan dalam pensampelan SKMM. Kaedah MCMC biasa termasuk algoritma Metropolis-Hastings dan algoritma pensampelan Gibbs. Kaedah ini mencapai penjanaan sampel dan penghampiran pengedaran melalui kebarangkalian peralihan yang berbeza, dengan itu memperoleh pensampelan taburan sasaran. Algoritma Metropolis-Hastings menggunakan mekanisme penerimaan-penolakan untuk memutuskan sama ada untuk menerima pemindahan, manakala algoritma pensampelan Gibbs menggunakan pengedaran bersyarat untuk membuat pemindahan. Kaedah ini digunakan secara meluas dalam statistik dan pembelajaran mesin serta boleh menyelesaikan masalah pensampelan dan inferens yang kompleks. Kemas kini EM 2 fungsi log-kemungkinan. Algoritma EM ialah algoritma lelaran, dan setiap lelaran merangkumi dua langkah: langkah E dan langkah M. Dalam langkah E, adalah perlu untuk mengira taburan posterior pembolehubah pendam dan mengira nilai jangkaan pembolehubah pendam. Dalam langkah M, nilai jangkaan pembolehubah tersembunyi yang dikira dalam langkah E perlu digunakan untuk memaksimumkan fungsi kemungkinan log untuk menyelesaikan anggaran kemungkinan maksimum parameter.

Kelebihan algoritma MCMC-EM ialah ia boleh mengendalikan model kebarangkalian kompleks dengan lebih baik, dan boleh menjana lebih banyak sampel melalui kaedah pensampelan untuk menganggarkan parameter model dengan lebih baik. Selain itu, algoritma MCMC-EM juga boleh mengimbangi kecekapan pensampelan dan ketepatan pensampelan dengan melaraskan parameter kaedah MCMC, dengan itu meningkatkan prestasi algoritma.

Walau bagaimanapun, algoritma MCMC-EM juga mempunyai beberapa masalah dan cabaran. Pertama, algoritma MCMC-EM memerlukan banyak sumber dan masa pengkomputeran, terutamanya apabila memproses data berskala besar. Kedua, algoritma MCMC-EM cenderung menumpu secara perlahan dan memerlukan banyak lelaran untuk mencapai penumpuan. Akhir sekali, keputusan algoritma MCMC-EM mungkin dipengaruhi oleh pemilihan kaedah MCMC dan tetapan parameter, jadi penyahpepijatan dan pengoptimuman yang sesuai diperlukan.

Secara umumnya, algoritma MCMC-EM ialah algoritma pembelajaran tanpa pengawasan yang penting dan digunakan secara meluas dalam bidang seperti anggaran parameter dan anggaran ketumpatan model kebarangkalian. Walaupun terdapat beberapa masalah dan cabaran dalam algoritma MCMC-EM, dengan peningkatan berterusan sumber pengkomputeran dan pengoptimuman algoritma, algoritma MCMC-EM akan menjadi lebih praktikal dan berkesan.

Atas ialah kandungan terperinci Algoritma EM rantai Monte Carlo Markov. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:网易伏羲. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
Jurang kemahiran AI memperlahankan rantaian bekalanJurang kemahiran AI memperlahankan rantaian bekalanApr 26, 2025 am 11:13 AM

Istilah "tenaga kerja siap sedia" sering digunakan, tetapi apakah maksudnya dalam industri rantaian bekalan? Menurut Abe Eshkenazi, Ketua Pegawai Eksekutif Persatuan Pengurusan Rantaian Bekalan (ASCM), ia menandakan profesional yang mampu mengkritik

Bagaimana satu syarikat secara senyap -senyap bekerja untuk mengubah AI selama -lamanyaBagaimana satu syarikat secara senyap -senyap bekerja untuk mengubah AI selama -lamanyaApr 26, 2025 am 11:12 AM

Revolusi AI yang terdesentralisasi secara senyap -senyap mendapat momentum. Jumaat ini di Austin, Texas, Sidang Kemuncak Endgame Bittensor menandakan momen penting, beralih ke desentralisasi AI (DEAI) dari teori kepada aplikasi praktikal. Tidak seperti iklan mewah

NVIDIA Melepaskan Microservices Nemo Untuk Menyebarkan Pembangunan Agen AINVIDIA Melepaskan Microservices Nemo Untuk Menyebarkan Pembangunan Agen AIApr 26, 2025 am 11:11 AM

Perusahaan AI menghadapi cabaran integrasi data Penggunaan perusahaan AI menghadapi cabaran utama: sistem bangunan yang dapat mengekalkan ketepatan dan kepraktisan dengan terus belajar data perniagaan. Microservices NEMO menyelesaikan masalah ini dengan mewujudkan apa yang NVIDIA menggambarkan sebagai "Flywheel Data", yang membolehkan sistem AI tetap relevan melalui pendedahan berterusan kepada maklumat perusahaan dan interaksi pengguna. Toolkit yang baru dilancarkan ini mengandungi lima microservices utama: Nemo Customizer mengendalikan penalaan model bahasa yang besar dengan latihan yang lebih tinggi. NEMO Evaluator menyediakan penilaian ringkas model AI untuk tanda aras tersuai. Nemo Guardrails Melaksanakan Kawalan Keselamatan untuk mengekalkan pematuhan dan kesesuaian

AI melukis gambar baru untuk masa depan seni dan reka bentukAI melukis gambar baru untuk masa depan seni dan reka bentukApr 26, 2025 am 11:10 AM

AI: Masa Depan Seni dan Reka Bentuk Kecerdasan Buatan (AI) mengubah bidang seni dan reka bentuk dengan cara yang belum pernah terjadi sebelumnya, dan impaknya tidak lagi terhad kepada amatur, tetapi lebih mempengaruhi profesional. Skim karya seni dan reka bentuk yang dihasilkan oleh AI dengan cepat menggantikan imej dan pereka bahan tradisional dalam banyak aktiviti reka bentuk transaksional seperti pengiklanan, generasi imej media sosial dan reka bentuk web. Walau bagaimanapun, artis dan pereka profesional juga mendapati nilai praktikal AI. Mereka menggunakan AI sebagai alat tambahan untuk meneroka kemungkinan estetik baru, menggabungkan gaya yang berbeza, dan membuat kesan visual baru. AI membantu artis dan pereka mengautomasikan tugas berulang, mencadangkan elemen reka bentuk yang berbeza dan memberikan input kreatif. AI menyokong pemindahan gaya, iaitu menggunakan gaya gambar

Bagaimana Zoom merevolusikan kerja dengan Agentic AI: Dari mesyuarat ke tonggakBagaimana Zoom merevolusikan kerja dengan Agentic AI: Dari mesyuarat ke tonggakApr 26, 2025 am 11:09 AM

Zoom, yang pada mulanya dikenali untuk platform persidangan video, memimpin revolusi tempat kerja dengan penggunaan inovatif AIS AI. Perbualan baru -baru ini dengan CTO Zoom, XD Huang, mendedahkan penglihatan yang bercita -cita tinggi syarikat itu. Menentukan Agentic AI Huang d

Ancaman eksistensi ke universitiAncaman eksistensi ke universitiApr 26, 2025 am 11:08 AM

Adakah AI akan merevolusikan pendidikan? Soalan ini mendorong refleksi serius di kalangan pendidik dan pihak berkepentingan. Penyepaduan AI ke dalam pendidikan memberikan peluang dan cabaran. Sebagai Matthew Lynch dari Nota Edvocate Tech, Universit

Prototaip: saintis Amerika mencari pekerjaan di luar negaraPrototaip: saintis Amerika mencari pekerjaan di luar negaraApr 26, 2025 am 11:07 AM

Pembangunan penyelidikan dan teknologi saintifik di Amerika Syarikat mungkin menghadapi cabaran, mungkin disebabkan oleh pemotongan anggaran. Menurut Alam, bilangan saintis Amerika yang memohon pekerjaan di luar negara meningkat sebanyak 32% dari Januari hingga Mac 2025 berbanding dengan tempoh yang sama pada tahun 2024. Pungutan sebelumnya menunjukkan bahawa 75% penyelidik yang ditinjau sedang mempertimbangkan untuk mencari pekerjaan di Eropah dan Kanada. Beratus-ratus geran NIH dan NSF telah ditamatkan dalam beberapa bulan yang lalu, dengan geran baru NIH turun kira-kira $ 2.3 bilion tahun ini, setitik hampir satu pertiga. Cadangan belanjawan yang bocor menunjukkan bahawa pentadbiran Trump sedang mempertimbangkan untuk memotong belanjawan secara mendadak untuk institusi saintifik, dengan kemungkinan pengurangan sehingga 50%. Kegawatan dalam bidang penyelidikan asas juga telah menjejaskan salah satu kelebihan utama Amerika Syarikat: menarik bakat luar negara. 35

Semua Mengenai Keluarga GPT 4.1 Terbuka AI - Analytics VidhyaSemua Mengenai Keluarga GPT 4.1 Terbuka AI - Analytics VidhyaApr 26, 2025 am 10:19 AM

OpenAI melancarkan siri GPT-4.1 yang kuat: keluarga tiga model bahasa lanjutan yang direka untuk aplikasi dunia nyata. Lompat penting ini menawarkan masa tindak balas yang lebih cepat, pemahaman yang lebih baik, dan kos yang dikurangkan secara drastik berbanding t

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod