cari
RumahPeranti teknologiAIMenyelam secara mendalam tentang konsep pengecaman corak dalam pembelajaran mesin

Menyelam secara mendalam tentang konsep pengecaman corak dalam pembelajaran mesin

Otak manusia mempunyai keupayaan pengecaman corak dan dengan mudah boleh memadankan maklumat yang dilihatnya dengan maklumat dalam ingatannya. Dalam pembelajaran mesin, pengecaman corak ialah teknik untuk memadankan maklumat dalam pangkalan data dengan data masuk dengan mengenal pasti ciri sepunya.

Bagaimana pengecaman corak berfungsi?

1. Pengumpulan dan prapemprosesan data

Sistem pengecaman corak boleh memproses pelbagai jenis data, seperti teks, video, audio, dsb., dan melaksanakan prapemprosesan data. Fasa ini adalah kritikal dan memfokuskan pada penambahan data dan hingar sistem penapisan.

2. Perwakilan Data

Rangkaian saraf menganalisis data yang ditapis untuk mendapatkan dan menemui maklumat yang bermakna. Ciri yang diekstrak ini dibahagikan kepada kandungan yang membentuk corak.

3. Membuat Keputusan

Corak dan cerapan sedia ada yang dikenal pasti dimasukkan ke dalam model l untuk ramalan kategori, ramalan kelompok atau ramalan nilai berdasarkan kes penggunaan perniagaan.

Dua situasi pengecaman corak

Pengecaman corak ialah satu cabang pembelajaran mesin yang menekankan pengecaman corak data. Pengecaman corak biasanya merupakan tugas pengelasan atau pengkategorian. Kategori ini sama ada ditakrifkan oleh sistem atau dipelajari berdasarkan persamaan antara corak.

Pengecaman pola penerokaan

bertujuan untuk mengenal pasti corak data umum. Algoritma ini menumpukan pada mencari corak tersembunyi atau kelompok ciri dalam data. Mereka bergantung terutamanya pada pengelasan tanpa pengawasan yang memberikan corak input kepada kelas yang tidak ditentukan.

Pengecaman Corak Deskriptif

bertujuan untuk mengelaskan corak yang dikesan dan mengenal pastinya sebagai sebahagian daripada kelas yang telah ditetapkan. Ia terutamanya menggunakan klasifikasi yang diselia. . titik data dan teknik statistik daripada Ketahui ciri dan corak daripada data. Ini melibatkan pengumpulan pemerhatian, mengkaji dan menganalisisnya untuk membuat kesimpulan peraturan atau konsep umum yang boleh digunakan untuk pemerhatian baru yang tidak kelihatan.

Corak dikumpulkan mengikut cirinya, dan bilangan ciri menentukan cara corak dilihat sebagai titik dalam ruang dimensi d. Ia mengikut teknik mudah ini untuk mengenal pasti corak:

bermakna adalah mungkin untuk mengenal pasti cara objek yang berkaitan melalui ruang vektor n-dimensi.

Generalisasi, peraturan dan konsep yang boleh diperoleh daripada perwakilan yang diberikan bagi set contoh dan oleh itu boleh digunakan pada titik data yang tidak kelihatan.

Anggaran penilaian, ketepatan dan keyakinan model yang menilai prestasi sistem.

Pengecaman Corak Sintaksis

Disebabkan potensi kerumitannya, corak yang mengandungi maklumat struktur atau perhubungan sukar untuk diukur menjadi vektor ciri. Dalam kes ini, pengecaman corak statistik tidak mencukupi. Walau bagaimanapun, data boleh dikelaskan berdasarkan persamaan struktur dalam corak data. Inilah sebabnya mengapa teknologi pengecaman corak sintaksis sesuai untuk pengecaman imej dan analisis pemandangan, di mana corak adalah kompleks dan bilangan ciri adalah besar.

Menguraikan corak kompleks kepada sub-corak hierarki yang lebih mudah berguna untuk mengenal pasti jalan, sungai atau orang dalam imej, atau sintaks dan sintaks dalam teks.

Pengecaman Corak Neural

Ia adalah teknik yang paling popular untuk mengesan corak, terima kasih kepada kerumitan yang boleh dikendalikannya.

Rangkaian saraf tiruan ialah sistem pengkomputeran yang dimodelkan pada seni bina rangkaian saraf, sama seperti cara otak manusia memproses isyarat yang kompleks.

Ia boleh belajar mengenali corak dalam pelbagai jenis data dan mengendalikan data yang tidak diketahui dengan cekap.

Padanan Templat

Pengecaman objek menggunakan padanan templat. Teknologi ini memadankan ciri objek dengan templat yang telah ditetapkan dan mengenal pasti objek melalui ejen. Biasanya digunakan dalam pengesanan objek penglihatan komputer di kawasan seperti robotik, penjejakan kenderaan, dsb., untuk mencari bahagian kecil imej yang sepadan dengan templat.

Kelebihan Pengecaman Corak

1. Pengecaman corak membantu menyelesaikan senario pengelasan seperti masalah pengesanan biometrik, dan mengklasifikasikan nodul ke dalam sel tumor/bukan tumor dalam pengimejan perubatan.

2. Pengecaman corak berguna untuk pengesanan objek, terutamanya untuk mengenal pasti objek yang jauh dan tersembunyi, atau objek yang boleh dilihat pada sudut yang berbeza daripada data input. Model AI boleh membuat pemerhatian halus dan mengaitkan berbilang corak dalam jumlah data yang besar, yang merupakan salah satu aplikasi pengecaman corak yang paling berharga.

3. Pengecaman corak pandai meringkaskan semua vektor ciri dan corak data, yang membolehkannya meramalkan harga saham dan membuat ramalan ekstrapolasi am yang tepat.

Cabaran pengecaman corak

1. Pengecaman corak selalunya memerlukan sejumlah besar data. Dalam erti kata lain, sejumlah besar data latihan diperlukan untuk melatih rangkaian saraf untuk analisis corak. Menyimpan jumlah data yang begitu besar boleh mengehadkan lagi aplikasi pengecaman corak.

2. Data latihan untuk algoritma pembelajaran mesin hendaklah datang daripada sumber yang boleh dipercayai. Ia harus bebas daripada berat sebelah dan hingar yang menghalang pengecaman corak yang wujud dan keupayaan membuat keputusan rangkaian saraf.

3 Masa latihan adalah panjang. Corak yang dikenal pasti bukan sahaja sukar untuk dianalisis, tetapi juga memerlukan masa yang ketara untuk mengumpul data, mempraproses data, dan melatih model.

Contoh Aplikasi Pengecaman Corak

1. Ramalan Pasaran Saham

Meramalkan nilai saham masa hadapan adalah salah satu tugas yang paling mencabar. Pada mulanya, model pembelajaran mesin linear dan keputusan telah digunakan, tetapi kini model pembelajaran mendalam turut digunakan. Ramai peniaga menggunakan corak carta, digabungkan dengan algoritma pengecaman corak lain yang melibatkan pembelajaran mendalam dan LSTM, untuk membuat keputusan perdagangan dan membuat ramalan pasaran saham.

2. Penyelidikan Pengguna

Pengecaman corak sebagai cara untuk menerangkan data dengan menyerlahkan ciri uniknya, iaitu corak sendiri. Ia digunakan untuk menganalisis data pengguna yang tersedia dan membahagikannya mengikut ciri yang dipilih.

3. Pengecaman Corak Teks

Pengecaman pola ialah kaedah mengenal pasti blok binaan teks, seperti perkataan, tatabahasa dan corak yang diikuti. Ini digunakan untuk semakan tatabahasa, terjemahan mesin, klasifikasi kandungan, dsb.

4. Maklum Balas Pelanggan

Sistem pengecaman corak mencari maklumat berguna dalam maklum balas pelanggan dan ulasan produk. Ini termasuk kata kunci yang digunakan, perasaan pelanggan anda dan perkara yang mereka mahukan. Ini penting untuk perkara seperti pesaing dan analisis pasaran.

5. Pengecaman Aksara Optik (OCR)

Teknologi pengecaman aksara optik (OCR) menukar dokumen yang diimbas, tangkapan skrin dan imej digital lain kepada fail elektronik yang boleh diedit dan dicari. OCR menghapuskan keperluan untuk kemasukan data manual, menjimatkan masa dan meningkatkan kecekapan. Untuk melakukan OCR, imej digital mula-mula dibahagikan dan diproses untuk mengesan corak optik. Corak ini kemudiannya dikelaskan kepada huruf, nombor, simbol, dll.

6. Chatbots

Setiap chatbot berfungsi dengan menggunakan algoritma pembelajaran mesin untuk mengelaskan teks berdasarkan pola ayat yang wujud dan menjana respons yang sesuai. Pentadbir sistem bertanggungjawab untuk memetakan semua corak yang mungkin kepada satu set respons yang mungkin. Teknologi ini dengan pemprosesan bahasa semula jadi sebagai terasnya ialah satu lagi contoh aplikasi pengecaman corak yang sangat baik.

7. Pengecaman Imej

Dalam imej, pengecaman corak boleh digunakan untuk mencari tepi, garisan dan bentuk. Sesuai untuk pemprosesan imej, penglihatan komputer, dll.

Atas ialah kandungan terperinci Menyelam secara mendalam tentang konsep pengecaman corak dalam pembelajaran mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:网易伏羲. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

mPDF

mPDF

mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),